Skip to main content
Log in

Thermal annealing of Stone–Wales defects in fullerenes and nanotubes

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermally activated annealing of topological Stone–Wales defects in carbon fullerenes and nanotubes is studied via molecular dynamics. The temperature dependences of characteristic times are shown to obey the Arrhenius law. The values of the relevant activation energies and frequency factors are found. The results are compared with the simulated potential energy surface data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  4. L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 1705 (2016).

    Article  ADS  Google Scholar 

  5. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  6. L. A. Openov and A. I. Podlivaev, JETP Lett. 84, 68 (2006).

    Article  ADS  Google Scholar 

  7. Q. Lu and B. Bhattacharya, Nanotechnology 16, 555 (2005).

    Article  ADS  Google Scholar 

  8. L. Pan, Z. Shen, Y. Jia, and X. Dai, Physica B 407, 2763 (2012).

    Article  ADS  Google Scholar 

  9. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chem. Rev. 106, 1105 (2006).

    Article  Google Scholar 

  10. C. Wang, G. Zhou, H. Liu, and W. Duan, J. Phys. Chem. B 110, 10266 (2006).

    Article  Google Scholar 

  11. S. S. Moliver, R. R. Zimagullov, and A. L. Semenov, Tech. Phys. Lett. 37, 678 (2011).

    Article  Google Scholar 

  12. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  13. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Physica E 81, 1 (2016).

    Article  ADS  Google Scholar 

  14. L. A. Openov and A. I. Podlivaev, JETP Lett. 104, 193 (2016).

    Article  ADS  Google Scholar 

  15. L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 847 (2016).

    Article  ADS  Google Scholar 

  16. M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).

    Article  ADS  Google Scholar 

  17. L. A. Openov and A. I. Podlivaev, Tech. Phys. Lett. 36, 31 (2010).

    Article  ADS  Google Scholar 

  18. J.-Y. Yi and J. Bernholc, J. Chem. Phys. 96, 8634 (1992).

    Article  ADS  Google Scholar 

  19. R. L. Murry, D. L. Strout, G. K. Odom, and G. E. Scuseria, Nature 366, 665 (1993).

    Article  ADS  Google Scholar 

  20. R. L. Murry, D. L. Strout, and G. E. Scuseria, Int. J. Mass Spectrom. Ion Proc. 138, 113 (1994).

    Article  ADS  Google Scholar 

  21. B. R. Eggen, M. I. Heggie, G. Jungnickel, C. D. Latham, R. Jones, and P. R. Briddon, Science 272, 87 (1996).

    Article  ADS  Google Scholar 

  22. Y. Kumeda and D. J. Wales, Chem. Phys. Lett. 374, 125 (2003).

    Article  ADS  Google Scholar 

  23. H. F. Bettinger, B. I. Yakobsen, and G. E. Scuseria, J. Am. Chem. Soc. 125, 5572 (2003).

    Article  Google Scholar 

  24. G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  25. A. I. Podlivaev and L. A. Openov, JETP Lett. 81, 533 (2005).

    Article  ADS  Google Scholar 

  26. E. Ertekin, D. C. Chrzan, and M. S. Daw, Phys. Rev. B 79, 155421 (2009).

    Article  ADS  Google Scholar 

  27. M. Kabir and K. J. van Vliet, J. Phys. Chem. C 120, 1989 (2016).

    Article  Google Scholar 

  28. L. G. Zhou and S.-Q. Shi, Appl. Phys. Lett. 83, 1222 (2003).

    Article  ADS  Google Scholar 

  29. J.-Y. Yi and J. Bernholc, Chem. Phys. Lett. 403, 359 (2005).

    Article  ADS  Google Scholar 

  30. A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Additional information

Original Russian Text © A.I. Podlivaev, L.A. Openov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 1, pp. 160–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Openov, L.A. Thermal annealing of Stone–Wales defects in fullerenes and nanotubes. Phys. Solid State 60, 162–166 (2018). https://doi.org/10.1134/S1063783418010183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418010183

Navigation