Skip to main content
Log in

Effect of hydrogen adsorption on the formation and annealing of Stone–Wales defects in graphene

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The heights of energy barriers preventing the formation and annealing of Stone–Wales defects in graphene with a hydrogen atom adsorbed on the defect or in its immediate vicinity have been calculated using the atomistic computer simulation. It has been shown that, in the presence of hydrogen, both barriers are significantly lower than those in the absence of hydrogen. Based on the analysis of the potential energy surface, the frequency factors have been calculated for two different paths of the Stone–Wales transformation, and the temperature dependences of the corresponding annealing times of the defects have been found. The results obtained have been compared with the first-principles calculations and molecular dynamics data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).

    Google Scholar 

  3. D. Saint-James, G. Sarma, and E. J. Thomas, Type II Superconductivity (Pergamon, London, 1969; Mir, Moscow, 1970).

    Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  5. G. López-Polín, C. Gómez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Pérez-Murano, and J. Gómez-Herrero, Nat. Phys. 11, 26 (2015).

    Article  Google Scholar 

  6. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).

    Article  ADS  Google Scholar 

  8. X. Peng and R. Ahuja, Nano Lett. 8, 4464 (2008).

    Article  ADS  Google Scholar 

  9. E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 61, 2693 (1988).

    Article  ADS  Google Scholar 

  10. L. Li, S. Reich, and J. Robertson, Phys. Rev. B: Condens. Matter 72, 184109 (2005).

    Article  ADS  Google Scholar 

  11. A. I. Podlivaev and L. A. Openov, Phys. Lett. A 379, 1757 (2015).

    Article  ADS  Google Scholar 

  12. J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008).

    Article  ADS  Google Scholar 

  13. A. I. Podlivaev and L. A. Openov, Phys. Solid State 57 (4), 820 (2015).

    Article  ADS  Google Scholar 

  14. T. Dumitric and B. I. Yakobson, Appl. Phys. Lett. 84, 2775 (2004).

    Article  ADS  Google Scholar 

  15. A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).

    Article  ADS  Google Scholar 

  16. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, New York, 1939; Goskhimizdat, Moscow, 1947).

    Google Scholar 

  17. A. A. Dzhurakhalov and F. M. Peeters, Carbon 49, 3258 (2011).

    Article  Google Scholar 

  18. Thermodynamic Properties of Individual Substances: A Reference Book, Ed. by V. P. Glushko (Nauka, Moscow, 1979), Vol. II, Book 1 [in Russian].

  19. L. A. Girifalco and R. A. Lad, J. Chem. Phys. 25, 693 (1956).

    Article  ADS  Google Scholar 

  20. J. Ma, D. Alfé, A. Michaelides, and E. Wang, Phys. Rev. B: Condens. Matter 80, 033407 (2009).

    Article  ADS  Google Scholar 

  21. L. A. Openov and A. I. Podlivaev, Physica E (Amsterdam) 70, 165 (2015).

    Article  ADS  Google Scholar 

  22. L. A. Openov and A. I. Podlivaev, Phys. Solid State 57 (7), 1477 (2015).

    Article  ADS  Google Scholar 

  23. A. I. Podlivaev and L. A. Openov, JETP Lett. 101 (3), 173 (2015).

    Article  ADS  Google Scholar 

  24. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).

    Article  ADS  Google Scholar 

  25. M. M. Maslov, D. A. Lobanov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 51 (3), 645 (2009).

    Article  ADS  Google Scholar 

  26. X.-J. Han, Y. Wang, Z.-Z. Lin, W. Zhang, J. Zuang, and X.-J. Ning, J. Chem. Phys. 132, 064103 (2010).

    Article  ADS  Google Scholar 

  27. S. A. Shostachenko, M. M. Maslov, V. S. Prudkovskii, and K. P. Katin, Phys. Solid State 57 (5), 1023 (2015).

    Article  ADS  Google Scholar 

  28. J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, J. Phys. Chem. 87, 2745 (1983).

    Article  Google Scholar 

  29. M. J. D. Powell, Math. Prog. 1, 26 (1971).

    Article  MATH  Google Scholar 

  30. D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B: Condens. Matter 77, 035427 (2008).

    Article  ADS  Google Scholar 

  31. S. Letardi, M. Gelino, F. Cleri, and V. Rosato, Surf. Sci. 496, 33 (2002).

    Article  ADS  Google Scholar 

  32. L. Chen, J. Li, D. Li, M. Wei, and X. Wang, Solid State Commun. 152, 1985 (2012).

    Article  ADS  Google Scholar 

  33. G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  34. T. C. Fitzgibbons, M. Guthrie, E. Xu, V. H. Crespi, S. K. Davidowski, G. D. Cody, N. Alem, and J. V. Badding, Nat. Mater. 14, 43 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Openov.

Additional information

Original Russian Text © A.I. Podlivaev, L.A. Openov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 12, pp. 2485–2491.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Openov, L.A. Effect of hydrogen adsorption on the formation and annealing of Stone–Wales defects in graphene. Phys. Solid State 57, 2562–2569 (2015). https://doi.org/10.1134/S1063783415120276

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415120276

Keywords

Navigation