Skip to main content
Log in

Adsorption of oxygen on low-index surfaces of Ti3Al alloy

  • Surface Physics, Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The atomic and electronic structure of the three surfaces of Ti3Al alloy—(0001), (\(1\bar 100\)), and (\(11\bar 20\))—is calculated by the projector augmented-wave method in the framework of the electron density functional theory. The surface energies are estimated as a function of the chemical potential of aluminum, which made it possible to construct a stability diagram for the surfaces under study. Adsorption of oxygen on differently oriented surfaces of the alloy is studied. It is found that the most preferred positions for oxygen adsorption are hollow positions on the (0001) and (\(11\bar 20\))Ti–Al surfaces and bridge positions on the (\(1\bar 100\))Ti‒Al-1 surface. Structural and electronic factors that determine these energy preferences are discussed. It is shown that regardless of the orientation of the surface, oxygen “prefers” titanium-enriched positions. The effect of oxygen on the atomic and electronic structure of low-index surfaces is discussed. It is found that at low concentrations of oxygen, the formation of its chemical bond with titanium and/or aluminum atoms in the surface and subsurface layers leads to the appearance of low-lying states split off from the bottom of the valence bands of metals, which is accompanied by the formation of a pseudogap and the weakening of Ti‒Al metal bonds in the surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Li and W. Gao, in Intermetallics Research Progress, Ed. by Y. N. Berdovsky (Nova Science, New York, 2008), p. 1.

    Google Scholar 

  2. I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals (Elsevier, Amsterdam, 2005, Tekhnosfera, Moscow, 2008).

    Google Scholar 

  3. F. H. Froes, C. Suryanarayana, and D. Eliezer, J. Mater. Sci. 27, 5113 (1992).

    Article  ADS  Google Scholar 

  4. Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane, J. Mater. Sci. 24, 1599 (1989).

    Article  ADS  Google Scholar 

  5. F. Dettenwanger and M. Schütze, Oxid. Met. 54, 121 (2000).

    Article  Google Scholar 

  6. R. G. Reddy, JOM 54, 65 (2002).

    Article  Google Scholar 

  7. M. P. Brady and P. F. Tortorelli, Intermetallics 12, 779 (2004).

    Article  Google Scholar 

  8. J. G. Speight, Lange’s Handbook of Chemistry, 16th ed. (McGraw-Hill, New York, 2005), p. 124.

    Google Scholar 

  9. A. Y. Lozovoi, A. Alavi, and M. W. Finnis, Phys. Rev. Lett. 85, 610 (2000).

    Article  ADS  Google Scholar 

  10. H. Li, S. Wang, and H. Ye, J. Mater. Sci. Technol. 25, 569 (2009).

    Google Scholar 

  11. S.-Y. Liu, J.-X. Shang, F.-H. Wang, and Y. Zhang, Phys. Rev. B 79, 075419 (2009).

    Article  ADS  Google Scholar 

  12. L. Wang, J.-X. Shang, F.-H. Wang, Y. Zhang, and A. Chroneos, J. Phys.: Condens. Matter 23, 265009 (2011).

    ADS  Google Scholar 

  13. Y. Song, J. H. Dai, and R. Yang, Surf. Sci. 606, 852 (2012).

    Article  ADS  Google Scholar 

  14. L. Wang, J.-X. Shang, F.-H. Wang, Y. Chen, and Y. Zhang, Acta Mater. 61, 1726 (2013).

    Article  Google Scholar 

  15. S. E. Kulkova, A. V. Bakulin, Q. M. Hu, and R. Yang, Comput. Mater. Sci. 97, 55 (2015).

    Article  Google Scholar 

  16. A. V. Bakulin, C. E. Kulkova, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 120, 257 (2015).

    Article  ADS  Google Scholar 

  17. A. M. Latyshev, A. V. Bakulin, S. E. Kulkova, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 123, 991 (2016).

    Article  ADS  Google Scholar 

  18. S.-Y. Liu, S. Liu, D. Li, T. M. Drwenski, W. Xue, H. Dang, and S. Wang, Phys. Chem. Chem. Phys. 14, 11160 (2012).

    Article  Google Scholar 

  19. L.-J. Wei, J.-X. Guo, X.-H. Dai, Y.-L. Wang, and B.-T. Liu, Surf. Rev. Lett. 22, 1550053 (2015).

    Article  Google Scholar 

  20. L.-J. Wei, J.-X. Guo, X.-H. Dai, L. Guan, Y.-L. Wang, and B.-T. Liu, Surf. Interface Anal. 48, 1337 (2016).

    Article  Google Scholar 

  21. V. Maurice, G. Despert, S. Zanna, P. Josso, M.-P. Bacos, and P. Marcus, Acta Mater. 55, 3315 (2007).

    Article  Google Scholar 

  22. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  24. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  25. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  26. G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  27. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  28. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Shi and C. Stampfl, Phys. Rev. B 76, 075327 (2007).

    Article  ADS  Google Scholar 

  30. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  31. Y. L. Liu, L. M. Liu, S. Q. Wang, and H. Q. Ye, Intermetallics 15, 428 (2007).

    Article  Google Scholar 

  32. M. H. Yoo, J. Zou, and C. L. Fu, Mater. Sci. Eng. A 192–193, 14 (1995).

    Article  Google Scholar 

  33. W. B. Pearson, A Handbook of Lattice Spacing and Structures of Metals and Alloys, 1st ed. (Pergamon, New York, 1958).

    Google Scholar 

  34. K. Tanaka, K. Okamoto, H. Inui, Y. Minonishi, M. Yamaguchi, and M. Koiwa, Philos. Mag. A 73, 1475 (1996).

    Article  ADS  Google Scholar 

  35. F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  ADS  Google Scholar 

  36. T. Hong, T. J. Watson-Yang, X.-Q. Guo, A. J. Freeman, T. Oguchi, and J.-H. Xu, Phys. Rev. B 43, 1940 (1991).

    Article  ADS  Google Scholar 

  37. D. Sornadurai, B. Panigrahi, and Ramani, J. Alloys Compd. 305, 35 (2000).

    Article  Google Scholar 

  38. D. Music and J. M. Schneider, Phys. Rev. B 74, 174110 (2006).

    Article  ADS  Google Scholar 

  39. Y. Wei, H.-B. Zhou, Y. Zhang, G.-H. Lu, and H. Xu, J. Phys.: Condens. Matter 23, 225504 (2011).

    ADS  Google Scholar 

  40. C. Y. Jones, W. E. Luecke, and E. Copland, Intermetallics 14, 54 (2006).

    Article  Google Scholar 

  41. R. Hultgren, P. D. Desai, M. Gleiser, and D. T. Hawkins, Selected Values of Thermodynamic Properties of Binary Alloys (Am. Soc. Metals, Metals Park, OH, 1973).

    Google Scholar 

  42. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (North Holland, Amsterdam, 1989).

    Google Scholar 

  43. Smithells Metals References Book, Ed. by E. A. Brandes and G. B. Brook, 7th ed. (Butterworth-Heinemen, London, 1992).

  44. L. Wang, J.-X. Shang, F.-H. Wang, and Y. Zhang, Appl. Surf. Sci. 276, 198 (2013).

    Article  ADS  Google Scholar 

  45. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  46. T. I. Spiridonova, A. V. Bakulin, and S. E. Kul’kova, Phys. Solid State 57, 1921 (2015).

    Article  ADS  Google Scholar 

  47. S. E. Kulkova, A. V. Bakulin, S. S. Kulkov, S. Hocker, and S. Schmauder, Phys. Scripta 90, 094010 (2015).

    Article  ADS  Google Scholar 

  48. M. R. Shanabarger, Mater. Sci. Eng. A 153, 608 (1992).

    Article  Google Scholar 

  49. M. R. Shanabarger, Appl. Surf. Sci. 134, 179 (1998).

    Article  ADS  Google Scholar 

  50. J. Rüsing and C. Herzig, Intermetallics 4, 647 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Additional information

Original Russian Text © A.M. Latyshev, A.V. Bakulin, S.E. Kulkova, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 9, pp. 1828–1842.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latyshev, A.M., Bakulin, A.V. & Kulkova, S.E. Adsorption of oxygen on low-index surfaces of Ti3Al alloy. Phys. Solid State 59, 1852–1866 (2017). https://doi.org/10.1134/S1063783417090165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417090165

Navigation