Skip to main content
Log in

Absorption and diffusion of oxygen in the Ti3Al alloy

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The absorption and diffusion of oxygen in the Ti3Al alloy are studied by the projector augmented wave within the density functional theory. The highest absorption energies are shown to correspond to the sites in the octahedra formed by six titanium atoms, and the presence of aluminum in the nearest neighbors leads to a substantial decrease in the binding energy of oxygen in the alloy by approximately 1.5 eV. The energy barriers of oxygen diffusion between various interstices in the crystal lattice of the alloy are estimated, and the preferred migration paths in the (0001) plane and the [0001] direction are determined. It is found that the migration barrier from the most preferred octahedral O1 site to distorted tetrahedral Ti-site (2.42 eV) is a key barrier and limits the oxygen diffusion in the alloy. The calculated temperature diffusion coefficient of oxygen in the Ti3Al alloy and the activation energies determined in two directions agree with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Li and W. Gao, in Intermetallics Research Progress, Ed. by Y. N. Berdovsky (Nova Science, New York, 2008), p. 1.

  2. F. Motte, C. Coddet, P. Sarrazin, et al., Oxid. Met. 10, 113 (1976).

    Article  Google Scholar 

  3. I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals (Elsevier, Amsterdam, 2005; Tekhnosfera, Moscow, 2008).

    Google Scholar 

  4. A. Rahmel and P. J. Spencer, Oxid. Met. 35, 53 (1991).

    Article  Google Scholar 

  5. K. L. Luthra, Oxid. Met. 36, 475 (1991).

    Article  Google Scholar 

  6. P. Kofstad, High Temperature Corrosion (Elsevier Science, London, 1988).

    Google Scholar 

  7. T. G. Avanesyan, Cand. Sci. (Chem.) Dissertation (Natl. Univ. Sci. Technol. MISiS, Moscow, 2014).

    Google Scholar 

  8. V. Maurice, G. Despert, S. Zanna, et al., Acta Mater. 55, 3315 (2007).

    Article  Google Scholar 

  9. S.-Y. Liu, S. Liu, D. Li, et al., Phys. Chem. Chem. Phys. 14, 11160 (2012).

    Article  Google Scholar 

  10. M. R. Shanabarger, Appl. Surf. Sci. 134, 179 (1998).

    Article  ADS  Google Scholar 

  11. M. Ramachran, D. Mantha, C. Williams, et al., Metal. Mater. Trans. A 42, 202 (2011).

    Article  Google Scholar 

  12. G. M. Hood, J. Nucl. Mater. 135, 292 (1985).

    Article  ADS  Google Scholar 

  13. H. Nakajima, G. M. Hood, and R. J. Schultz, Philos. Mag. B 58, 319 (1988).

    Article  ADS  Google Scholar 

  14. H. Nakajima and M. Koiwa, ISIJ Int. 31, 757 (1991).

    Article  Google Scholar 

  15. H. Nakajima, K. Yusa, and Y. Kondo, Scr. Mater. 34, 249 (1996).

    Article  Google Scholar 

  16. J. Rüsing and Chr. Herzig, Intermetallics 4, 647 (1996).

    Article  Google Scholar 

  17. J. Breuer, T. Wilger, M. Friesel, et al., Intermetallics 7, 381 (1999).

    Article  Google Scholar 

  18. Chr. Herzig, M. Friesel, D. Derdau, et al., Intermetallics 7, 1141 (1999).

    Article  Google Scholar 

  19. Y. Koizumi, M. Kishimoto, Y. Minamino, et al., Philos. Mag. 88, 2991 (2008).

    Article  ADS  Google Scholar 

  20. M. J. Gillan, J. Phys. C 20, 3621 (1987).

    Article  ADS  Google Scholar 

  21. G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 (1989).

    Article  ADS  Google Scholar 

  22. D. E. Jing and E. A. Carter, Phys. Rev. B 70, 064102 (2004).

    Article  ADS  Google Scholar 

  23. X. L. Han, Q. Wang, D. L. Sun, et al., Int. J. Hydrogen Energy 34, 3983 (2009).

    Article  Google Scholar 

  24. D. Connétable, J. Huez, É. Andrieu, et al., J. Phys.: Condens. Matter 23, 405401 (2011).

    Google Scholar 

  25. A. Yu. Kuksin, A. S. Rokhmanenkov, and V. V. Stegailov, Phys. Solid State 55, 367 (2013).

    Article  ADS  Google Scholar 

  26. Z.-S. Nong, J.-C. Zhu, X.-W. Yang, et al., Comput. Mater. Sci. 81, 517 (2014).

    Article  Google Scholar 

  27. A. V. Bakulin, S. S. Kulkov, S. E. Kulkova, et al., Int. J. Hydrogen Energy 39, 12213 (2014).

    Article  Google Scholar 

  28. A. V. Bakulin, S. S. Kulkov, and S. E. Kulkova, Phys. Solid State 56, 1261 (2014).

    Article  ADS  Google Scholar 

  29. S. S. Kulkov, A. V. Bakulin, and S. E. Kulkova, J. Exp. Theor. Phys. 119, 521 (2014).

    Article  Google Scholar 

  30. J. W. Wang and H. R. Gong, Int. J. Hydrogen Energy 39, 6068 (2014).

    Article  Google Scholar 

  31. A. V. Bakulin, T. I. Spiridonova, S. E. Kulkova, et al., Int. J. Hydrogen Energy 41, 9108 (2016).

    Article  Google Scholar 

  32. H. Wu, Oxygen Diffusion Through Titanium and Other hcp Metals (Univ. of Illinois, Urbana, IL, 2013).

    Google Scholar 

  33. H. Li, S. Wang, and H. Ye, J. Mater. Sci. Technol. 25, 569 (2009).

  34. S.-Y. Liu, J.-X. Shang, F.-H. Wang, et al., Phys. Rev. B 79, 075419 (2009).

    Article  ADS  Google Scholar 

  35. L. Wang, J.-X. Shang, F.-H. Wang, et al., Acta Mater. 61, 1726 (2013).

    Article  Google Scholar 

  36. C. E. Kulkova, A. V. Bakulin, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 120, 257 (2015).

    Article  ADS  Google Scholar 

  37. S. E. Kulkova, A. V. Bakulin, Q. M. Hu, et al., Comput. Mater. Sci. 97, 55 (2015).

    Article  Google Scholar 

  38. A. M. Latyshev, A. V. Bakulin, C. E. Kulkova, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 123, 991 (2016).

    Article  ADS  Google Scholar 

  39. A. Bakulin, A. Latyshev, and S. Kulkova, Solid State Phenom. 258, 408 (2017).

    Article  Google Scholar 

  40. L.-J. Wei, J.-X. Guo, X.-H. Dai, et al., Surf. Rev. Lett. 22, 1550053 (2015).

    Article  Google Scholar 

  41. L. J. Wei, J. X. Guo, X. H. Dai, et al., Surf. Interface Anal. 48, 1337 (2016).

    Article  Google Scholar 

  42. T. Hong, T. J. Watson-Yang, X.-Q. Guo, et al., Phys. Rev. B 43, 1940 (1991).

    Article  ADS  Google Scholar 

  43. D. Sornadurai, B. Panigrahi, J. Alloys Compd. 305, 35 (2000).

    Article  Google Scholar 

  44. D. Music and J. M. Schneider, Phys. Rev. B 74, 174110 (2006).

    Article  ADS  Google Scholar 

  45. Y. A. Bertin, J. Parisot, and J. L. Gacougnolle, J. Less-Common Met. 69, 121 (1980).

    Article  Google Scholar 

  46. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

  47. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  48. G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).

    Article  ADS  Google Scholar 

  49. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

  50. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  51. G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  52. P. Villars and L. D. Calvert, in Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM Int., Materials Park, OH, 1991).

    Google Scholar 

  53. K. Tanaka, K. Okamoto, H. Inui, et al., Philos. Mag. A 73, 1475 (1996).

    Article  ADS  Google Scholar 

  54. C. Y. Jones, W. E. Luecke, and E. Copland, Intermetallics 14, 54 (2006).

    Article  Google Scholar 

  55. Y. Wei, H.-B. Zhou, Y. Zhang, et al., J. Phys.: Condens. Matter 23, 225504 (2011).

    ADS  Google Scholar 

  56. C. J. Rosa, Metall. Trans. 1, 2517 (1970).

    Google Scholar 

  57. M. Dechamps and P. Lehr, J. Less-Common Met. 56, 193 (1977).

    Article  Google Scholar 

  58. D. David, G. Beranger, and E. A. Garcia, J. Electrochem. Soc. 130, 1423 (1983).

    Article  Google Scholar 

  59. V. B. Vykhodets, S. M. Klotsman, T. E. Kurennykh, et al., Fiz. Met. Metalloved. 68, 723 (1989).

    Google Scholar 

  60. F. L. Bregolin, M. Behar, and F. Dyment, Appl. Phys. A 86, 481 (2007).

    Article  ADS  Google Scholar 

  61. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., Otkryt. Sist., No. 7, 36 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Additional information

Original Russian Text © A.V. Bakulin, A.M. Latyshev, S.E. Kulkova, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 1, pp. 164–176.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, A.V., Latyshev, A.M. & Kulkova, S.E. Absorption and diffusion of oxygen in the Ti3Al alloy. J. Exp. Theor. Phys. 125, 138–147 (2017). https://doi.org/10.1134/S1063776117070019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117070019

Navigation