Skip to main content
Log in

The irradiation influence on the properties of silver sulfide (Ag2S) colloidal nanoparticles

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The aqueous solutions of different stability containing silver sulfide (Ag2S) nanoparticles are studied. The stable, transparent, and turbid solutions have been subjected to daylight for 7 months, to ultraviolet and laser irradiation, as well as to an electron beam. Solar radiation is found to favor the Ag2S reduction to Ag and/or the formation of Ag2S/Ag hybrid nanoparticles in the solution. At a high amount of hybrid nanoparticles, the exciton–plasmon interaction causes asymmetry in the absorption spectra. The exposure of Ag2S particles precipitated from the solution with the electron beam leads to the reversible growth of Ag threads. The possible exciton–plasmon interplay mechanisms in Ag2S/Ag hybrid nanoparticles are considered. The physical mechanisms of the changing Ag2S stoichiometry, the formation of metallic Ag and Ag2S/Ag hybrid nanoparticles are the generation of hot carriers and the energy transfer (exciton–plasmon interaction) in a metal–semiconductor hybrid nanosystem are elucidated, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Brongersma, N. J. Halas, and P. Nordlander, Nat. Nanotechnol. 10, 25 (2015).

    Article  ADS  Google Scholar 

  2. Q. Li, H. Wei, and H. Xu, Nano Lett. 14, 3358 (2014).

    Article  ADS  Google Scholar 

  3. X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, Light: Sci. Appl. 5, e16017 (2016).

    Article  Google Scholar 

  4. A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007).

    Article  Google Scholar 

  5. E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, Nano Lett. 11, 1792 (2011).

    Article  ADS  Google Scholar 

  6. J-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, Phys. Rev. B 77, 165301 (2008).

    Article  ADS  Google Scholar 

  7. W. R. Erwin, H. F. Zarick, E. M. Talbert, and R. Bardhan, Energy Environ. Sci. 9, 1577 (2016).

    Article  Google Scholar 

  8. P. Narang, R. Sundararaman, and H. A. Atwater, Nanophotonics 5, 96 (2016).

    Article  Google Scholar 

  9. H. Zhang, V. Kulkarni, E. Prodan, P. Nordlander, and A. O. Govorov, J. Phys. Chem. C 118, 16035 (2014).

    Article  Google Scholar 

  10. E.-M. Roller, L. Khosravi Khorashad, M. Fedoruk, R. Schreiber, A. O. Govorov, and T. Liedl, Nano Lett. 15, 1368 (2015).

    Article  ADS  Google Scholar 

  11. T. Bora, D. Zoepfl, and J. Dutta, Sci. Rep. 6, 26913 (2016).

    Article  ADS  Google Scholar 

  12. J. Yang, N. J. Kramer, K. S. Schramke, L. M. Wheeler, L. V. Besteiro, C. J. Hogan, Jr. A. O, Govorov, and U. R. Kortshagen, Nano Lett. 16, 1472 (2016).

    Article  ADS  Google Scholar 

  13. G. Zhu and Z. Xu, J. Am. Chem. Soc. 133, 148 (2011).

    Article  Google Scholar 

  14. K. Terabe, T. Nakayama, T. Hasegawa, and M. Aono, J. Appl. Phys. 91, 10110 (2002).

    Article  ADS  Google Scholar 

  15. L. Motte and J. Urban, J. Phys. Chem. B 109, 21499 (2005).

    Article  Google Scholar 

  16. V. I. Roldugin, Russ. Chem. Rev. 69, 821 (2000).

    Article  ADS  Google Scholar 

  17. N. Satoh, H. Hasegawa, and K. Tsujii, J. Phys. Chem. 98, 2143 (1994).

    Article  Google Scholar 

  18. S. I. Sadovnikov, A. I. Gusev, E. Yu. Gerasimov, and A. A. Rempel, Chem. Phys. Lett. 642, 17 (2015).

    Article  ADS  Google Scholar 

  19. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Nano-Struct. Nano-Objects 7, 81 (2016).

    Article  Google Scholar 

  20. B. E. Dahneke, Measurement of Suspended Particles by Quasielastic Light Scattering (Wiley, New York, 1983).

    MATH  Google Scholar 

  21. R. Pecora, Dynamic Light Scattering: Applications of Photoncorrelation Spectroscopy (Springer, New York, 1985).

    Book  Google Scholar 

  22. M. Kaszuba, D. McKnight, M. T. Connah, F. C. McNeil-Watson, and U. J. Nobbmann, Nanopart. Res. 10, 823 (2008).

    Article  Google Scholar 

  23. W. Tscharnuter, in Encyclopedia of Analytical Chemistry, Ed. by R. A. Meyers (Wiley, New York, 2000), p. 5469.

    Google Scholar 

  24. R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications (Academic, 1988).

    Google Scholar 

  25. V. V. Kuznetsov, Physical and Colloid Chemistry (Vyssh. Shkola, Moscow, 1968) [in Russian].

    Google Scholar 

  26. C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, and Q. Wang, Biomaterials 35, 393 (2014).

    Article  Google Scholar 

  27. M. Yarema, S. Pichler, M. Sytnyk, R. Seyrkammer, R. Lechner, G. Popovski, D. Jarzab, K. Szendrei, R. Resel, O. Korovyanko, M. Loi, O. Paris, G. Hesser, and W. Heiss, ACS Nano 5, 3758 (2011).

    Article  Google Scholar 

  28. W. Zhang, A. O. Govorov, and G. W. Bryant, Phys. Rev. Lett. 97, 146804 (2006).

    Article  ADS  Google Scholar 

  29. V. G. Rivera, F. A. Ferri, and E. Marega, Jr., in Plasmonics: Principles and Applications, Ed. by K. Y. Kim (InTech, Rijeka, Croatia, 2012), Chap. 11.

    Google Scholar 

  30. X. M. Wu, P. L. Redmond, H. T. Liu, Y. H. Chen, M. Steigerwald, and L. Brus, J. Am. Chem. Soc. 130, 9500 (2008).

    Article  Google Scholar 

  31. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, Nature 425, 487 (2003).

    Article  ADS  Google Scholar 

  32. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotov, Nat. Mater. 6, 291 (2007).

    Article  ADS  Google Scholar 

  33. A. E. Miroshnichenko, S. V. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  34. A. O. Govorov and H. Zhang, J. Phys. Chem. C 119, 6181 (2015).

    Article  Google Scholar 

  35. S. V. Rempel’, N. N. Aleksandrova, Yu. V. Kuznetsova, and E. Yu. Gerasimov, Inorg. Mater. 52, 101 (2016).

    Article  Google Scholar 

  36. S. Linic, P. Hristopher, and D. B. Ingram, Nat. Mater. 10, 911 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rempel.

Additional information

Original Russian Text © S.V. Rempel, Yu.V. Kuznetsova, E.Yu. Gerasimov, A.A. Rempel’, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 8, pp. 1604–1611.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rempel, S.V., Kuznetsova, Y.V., Gerasimov, E.Y. et al. The irradiation influence on the properties of silver sulfide (Ag2S) colloidal nanoparticles. Phys. Solid State 59, 1629–1636 (2017). https://doi.org/10.1134/S1063783417080224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417080224

Navigation