Skip to main content
Log in

Structural analysis of the fracture surface of a heterogeneous body (quartz sandstone)

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure of surface layers of quartz sandstone with a thickness of ~1 μm before and after destruction by a compressive stress is studied by methods of infrared, photoluminescent, and Raman spectroscopy. Before destruction, this layer contained quartz grains cemented with montmorrillonite and kaolinite. The grains are covered with a thin water layer and have crystallographic defects: Si–O, self-trapped excitons, AlOH and LiOH compounds, [AlO4] centers, etc. The destructed surface contains separate quartz grains with sizes of ~2 μm and a reduced defect concentration. It is assumed that the defects reduce the strength of quartz grains, which are destroyed in the first turn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Dietrich, J. Geophys. Res. 77, 3690 (1972).

    Article  ADS  Google Scholar 

  2. C. H. Scholz, The Mechanics of Earthquakes and Faulting, 2nd ed. (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  3. G. di Toro, R. Han, T. Hirose, N. de Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shimamoto, Nature 471, 494 (2011).

    Article  ADS  Google Scholar 

  4. A. Niemeijer, G. Di Toro, W. A. Griffith, A. Bistacchi, S. A. F. Smith, and S. Nielsen, J. Struct. Geol. 39, 2 (2012).

    Article  ADS  Google Scholar 

  5. G. A. Sobolev, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. I. Vettegren’, V. B. Kulik, and R. I. Mamalimov, Fiz. Zemli, Nos. 9–10, 17 (2012).

    Google Scholar 

  6. G. A. Sobolev, V. I. Vettegren’, V. V. Ruzhich, L. A. Ivanova, R. I. Mamalimov, and I. P. Shcherbakov, Vulkanol. Seismol., No. 3, 3 (2015).

    Google Scholar 

  7. G. A. Sobolev, V. I. Vettegren’, V. V. Ruzhich, S. M. Kireenkova, A. I. Smul’skaya, R. I. Mamalimov, and V. B. Kulik, Geofiz. Issled. 17 (4), 5 (2015).

    Google Scholar 

  8. V. I. Vettegren’, A. V. Ponomarev, G. A. Sobolev, I. P. Shcherbakov, R. I. Mamalimov, V. B. Kulik, and A. V. Patonin, Phys. Solid State 59, 588 (2017).

    Article  ADS  Google Scholar 

  9. A. V. Patonin, A. V. Ponomarev, and V. B. Smirnov, Seismich. Prib. 49 (1), 19 (2013).

    Google Scholar 

  10. M. Born and E. Wolf, Principles of Optics, (Pergamon, Oxford, 1964) 2nd ed.

    Google Scholar 

  11. W. G. Spitzer and D. A. Kleinman, Phys. Rev. 121, 1324 (1961).

    Article  ADS  Google Scholar 

  12. J. Etchepare, M. Merian, and P. J. Kaplan, Chem. Phys. 60, 1873 (1974).

    ADS  Google Scholar 

  13. J. W. Salisbury and A. Wald, Icarus 96, 121 (1992).

    Article  ADS  Google Scholar 

  14. J. R. Aronson and A. G. Emslie, Appl. Opt. 12, 2573 (1973).

    Article  ADS  Google Scholar 

  15. M. A. Karakassides, D. Gournis, and D. Petridis, Clay Miner. 34, 429 (1999).

    Article  Google Scholar 

  16. L. Vaculíková, E. Plevová, S. Vallová, and I. Koutník, Acta Geodyn. Geomater. 8, 59 (2011).

    Google Scholar 

  17. H. Yamagishi, S. Nakashima, and Y. Ito, Phys. Chem. Miner. 24, 66 (1997).

    Article  ADS  Google Scholar 

  18. S. Suzuki and S. Nakashima, Phys. Chem. Miner. 26, 217 (1999).

    Article  ADS  Google Scholar 

  19. S. Lameiras, E. H. M. Nunes, and W. L. Vasconcelos, Mater. Res. 12, 315 (2009).

    Article  Google Scholar 

  20. B. Perny, P. Eberhardt, K. Ramseyer, and J. Mullis, Am. Miner. 77, 534 (1992).

    Google Scholar 

  21. J. Götze, Microsc. Microanal. 18, 1270 (2012).

  22. G. A. Sobolev, V. I. Vettegren’, S. M. Kireenkova, V. B. Kulik, Yu. A. Morozov, and A. I. Smul’skaya, Fiz. Zemli 6, 7 (2007).

    Google Scholar 

  23. G. A. Sobolev, Yu. S. Genshaft, S. M. Kireenkova, Yu. A. Morozov, A. I. Smul’skaya, V. I. Vettegren’, and V. B. Kulik, Fiz. Zemli 6, 465 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vettegren’.

Additional information

Original Russian Text © V.I. Vettegren’, R.I. Mamalimov, V.B. Kulik, A.V. Patonin, A.V. Ponomarev, G.A. Sobolev, I.P. Shcherbakov, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 7, pp. 1315–1318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vettegren’, V.I., Mamalimov, R.I., Kulik, V.B. et al. Structural analysis of the fracture surface of a heterogeneous body (quartz sandstone). Phys. Solid State 59, 1340–1344 (2017). https://doi.org/10.1134/S1063783417070307

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070307

Navigation