Skip to main content
Log in

Transformation of the Surface Structure of Marble under the Action of a Shock Wave

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The structure of marble fracture fragments formed after the destruction under the action of a shock wave have been analyzed by Raman, infrared, and luminescence spectroscopic techniques. It has been found that calcite I in the surface layer of fragments with thicknesses of about 2 μm is transformed into high-pressure phase calcite III. At the same time, concentrations of Mn2+, Eu3+, and other ions decrease to about onefourth of their initial values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, Phys.-Usp. 50, (333 (2007).

    Article  ADS  Google Scholar 

  2. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).

    Book  Google Scholar 

  3. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 57, 1818 (2015).

    Article  ADS  Google Scholar 

  4. G. A. Malygin, Phys. Solid State 57, 967 (2015).

    Article  ADS  Google Scholar 

  5. V. I. Vettegren, A. V. Voronin, V. S. Kuksenko, R. I. Mamalimov, and I. P. Shcherbakov, Phys. Solid State 56, 317 (2014).

    Article  ADS  Google Scholar 

  6. V. I. Vettegren, I. P. Shcherbakov, A. V. Voronin, V. S. Kuksenko, and R. I. Mamalimov, Phys. Solid State 56, 1018 (2014).

    Article  ADS  Google Scholar 

  7. V. I. Vettegren, I. P. Shcherbakov, V. S. Kuksenko, and R. I. Mamalimov, Phys. Solid State 56, 1828 (2014).

    Article  ADS  Google Scholar 

  8. V. I. Vettegren, V. S. Kuksenko, and I. P. Shcherbakov, Izv., Phys. Solid Earth 52, 754 (2016).

    Article  ADS  Google Scholar 

  9. I. P. Shcherbakov, V. I. Vettegren, and R. I. Mamalimov, Tech. Phys. 62, 1533 (2017).

    Article  Google Scholar 

  10. V. I. Vettegren, V. S. Kuksenko, I. P. Shcherbakov, and R. I. Mamalimov, Phys. Solid State 57, 2458 (2015).

    Article  ADS  Google Scholar 

  11. V. I. Vettegren, I. P. Shcherbakov, R. I. Mamalimov, and V. B. Kulik, Phys. Solid State 58, 699 (2016).

    Article  ADS  Google Scholar 

  12. L. Merrill and W. A. Bassett, Acta Crystallogr., Sect. B 31, 343 (1975).

    Article  Google Scholar 

  13. M. Merlini, W. A. Crichton, J. Chantel, J. Guignard, and S. Poli, Mineral. Mag. 78, 225 (2014).

    Article  Google Scholar 

  14. K. Catalli and Q. Williams, Am. Mineral. 90, 1679 (2005).

    Article  ADS  Google Scholar 

  15. K. B. Abramova, I. P. Shcherbakov, and A. I. Rusakov, Tech. Phys. 44, 259 (1999).

    Article  Google Scholar 

  16. A. B. Kuzmenko, Rev. Sci. Instrum. 76, 083108 (2005).

    Article  ADS  Google Scholar 

  17. E. Wolf and M. Born, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).

    Google Scholar 

  18. S. Gunasekaran, G. Anbalagan, and S. J. Pandi, J. Raman Spectrosc. 37, 892 (2006).

    Article  ADS  Google Scholar 

  19. E. Huang, C. H. Chen, T. Huang, E. H. Lin, and J.-A. Xu, Am. Mineral. 86, 473 (2000).

    Article  ADS  Google Scholar 

  20. P. Richet, B. O. Mysen, and J. Ingrin, Phys. Chem. Miner. 25, 401 (1998).

    Article  ADS  Google Scholar 

  21. S. Gunasekaran, G. Anbalagan, and S. J. Pandi, J. Raman Spectrosc. 37, 892 (2006).

    Article  ADS  Google Scholar 

  22. D. Lou, F. Sun, and L. Li, Chin. Opt. Lett. 5, 370 (2007).

    ADS  Google Scholar 

  23. L. V. Y. Noël, R. Orlando, C. M. Zicovich-Wilson, M. Ferrero, and R. Dovesi, Theor. Chem. Acc. 117, 991 (2007).

    Article  Google Scholar 

  24. K. Catalli and Q. Williams, Am. Mineral. 90, 1679 (2005).

    Article  ADS  Google Scholar 

  25. O. Madelung, Festkörpertheorie (Springer, Berlin, 1972).

    Google Scholar 

  26. Q. Williams, B. Collerson, and E. Knittle, Am. Mineral. 77, (1158 (1992).

    Google Scholar 

  27. J. Reeder, M. Nugent, C. D. Tait, D. E. Morris, S. M. Heald, K. M. Beck, W. P. Hess, and A. Lanzirotti, Geochim. Cosmochim. Acta 65, 3491 (2001).

    Article  ADS  Google Scholar 

  28. K. Polikreti and C. Christofides, Appl. Phys. A 90, 285 (2008).

    Article  ADS  Google Scholar 

  29. D. Habermann, R. Neuser, and D. K. Richter, Sediment. Geol. 116, 13 (1998).

    Article  ADS  Google Scholar 

  30. K. Polikreti and C. Christofides, Appl. Phys. A 90, 285 (2008).

    Article  ADS  Google Scholar 

  31. T. Calderon, M. Aguilar, F. Jaque, and R. Coyll, J. Phys. C: Solid State Phys. 17, 2027 (1984).

    Article  ADS  Google Scholar 

  32. J. Reeder, M. Nugent, C. D. Tait, D. E. Morris, S. M. Heald, K. M. Beck, W. P. Hess, and A. Lanzirotti, Geochim. Cosmochim. Acta 65, 3491 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vettegren.

Additional information

Original Russian Text © I.P. Shcherbakov, V.I. Vettegren, A.Ya. Bashkarev, R.I. Mamalimov, 2018, published in Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 88, No. 1, pp. 80–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, I.P., Vettegren, V.I., Bashkarev, A.Y. et al. Transformation of the Surface Structure of Marble under the Action of a Shock Wave. Tech. Phys. 63, 78–82 (2018). https://doi.org/10.1134/S106378421801022X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421801022X

Navigation