Skip to main content
Log in

A study of the critical properties of the Ising model on body-centered cubic lattice taking into account the interaction of next behind nearest neighbors

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The replica Monte Carlo method has been used to investigate the critical behavior of a threedimensional antiferromagnetic Ising model on a body-centered cubic lattice, taking into account interactions of the adjacent behind neighbors. Investigations are carried out for the ratios of the values of exchange interactions behind the nearest and next nearest neighbors k = J 2/J 1 in the range of k ∈ [0.0, 1.0] with the step Δk = 0.1. In the framework of the theory of finite-dimensional scaling the static critical indices of heat capacity α, susceptibility γ, of the order parameter β, correlation radius ν, and also the Fisher index η are calculated. It is shown that the universality class of the critical behavior of this model is kept in the interval of k ∈ [0.0, 0.6]. It is established that a nonuniversal critical behavior is observed in the range k ∈ [0.8, 1.0].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Sosin, L. A. Prozorova, and A. I. Smirnov, Phys.— Usp. 48 (1), 83 (2005).

    Article  ADS  Google Scholar 

  2. Vik. S. Dotsenko, Phys.—Usp. 38 (5), 457 (1995).

    Article  ADS  Google Scholar 

  3. S. E. Korshunov, Phys.—Usp. 49 (3), 225 (2006).

    Article  ADS  Google Scholar 

  4. S. V. Maleev, Phys.—Usp. 45 (6), 569 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Tisser, B. Delamotte, and D. Mouhanna, Phys. Rev. Lett. 84, 5208 (2000).

    Article  ADS  Google Scholar 

  6. P. Calabrese, P. Parruccini, A. Pelissetto, and E. Vicari, Phys. Rev. B: Condens. Matter 70, 174439 (2004).

    Article  ADS  Google Scholar 

  7. G. Zumbach, Nucl. Phys. B 413, 771 (1994).

    Article  ADS  Google Scholar 

  8. A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B: Condens. Matter 63, 140414(R) (2001).

    Article  ADS  Google Scholar 

  9. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  10. P. H. Lundow, K. Markstrom, and A. Rosengren, Philos. Mag. 89, 2042 (2009).

    Article  Google Scholar 

  11. P. Butera and M. Comi, Phys. Rev. B: Condens. Matter 65, 144431 (2002).

    Article  ADS  Google Scholar 

  12. P. Butera and M. Comi, Phys. Rev. B: Condens. Matter 72, 014442 (2005).

    Article  ADS  Google Scholar 

  13. M. Plischke and J. Oitmaa, Phys. Rev. B: Condens. Matter 19, 487 (1979).

    Article  ADS  Google Scholar 

  14. J. R. Banavar, D. Jasnow, and D. P. Landau, Phys. Rev. B: Condens. Matter 20, 3820 (1979).

    Article  ADS  Google Scholar 

  15. M. J. Velgakis and M. Ferer, Phys. Rev. B: Condens. Matter 27, 401 (1983).

    Article  ADS  Google Scholar 

  16. A. K. Murtazaev, M. K. Ramazanov, F. A. Kasan-Ogly, and D. R. Kurbanova, J. Exp. Theor. Phys. 120 (1), 110 (2015).

    Article  ADS  Google Scholar 

  17. H. Kawamura, J. Phys. Soc. Jpn. 61, 1299 (1992).

    Article  ADS  Google Scholar 

  18. A. Mailhot, M. L. Plumer, and A. Caille, Phys. Rev. B: Condens. Matter 50, 6854 (1994).

    Article  ADS  Google Scholar 

  19. L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Ya. Shapiro, and L. N. Dem’yants, JETP Lett. 80 (3), 204 (2004).

    Article  ADS  Google Scholar 

  20. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Low Temp. Phys. 37 (12), 1001 (2011).

    Article  ADS  Google Scholar 

  21. F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Magn. Magn. Mater. 324, 3418 (2012).

    Article  ADS  Google Scholar 

  22. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, J. Exp. Theor. Phys. 115 (2), 303 (2012).

    Article  ADS  Google Scholar 

  23. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. B (Amsterdam, Neth.) 476, 1 (2015).

    Article  ADS  Google Scholar 

  24. F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, J. Magn. Magn. Mater. 384, 247 (2015).

    Article  ADS  Google Scholar 

  25. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Solid State Commun. 233, 35 (2016).

    Article  ADS  Google Scholar 

  26. A. K. Murtazaev, M. K. Ramazanov, and M. K. Badiev, Phys. Solid State 52 (8), 1673 (2010).

    Article  ADS  Google Scholar 

  27. A. K. Murtazaev and M. K. Ramazanov, Phys. Solid State 53 (5), 1067 (2011).

    Article  ADS  Google Scholar 

  28. A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolym. Pept. Sci. 60, 96 (2001).

    Article  Google Scholar 

  29. A. K. Murtazaev, M. K. Ramazanov, F. A. Kasan-ogly, and M. K. Badiev, J. Exp. Theor. Phys. 116 (6), 1091 (2013).

    Article  Google Scholar 

  30. K. Binder and J.-Sh. Wang, J. Stat. Phys. 55, 87 (1989).

    Article  ADS  Google Scholar 

  31. P. Peczak, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B: Condens. Matter 43, 6087 (1991).

    Article  ADS  Google Scholar 

  32. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  33. F. Wang and D. P. Landau, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 056101 (2001).

    Article  ADS  Google Scholar 

  34. M. K. Ramazanov, JETP Lett. 94 (4), 311 (2011).

    Article  ADS  Google Scholar 

  35. M. K. Ramazanov and A. K. Murtazaev, JETP Lett. 101 (10), 714 (2015).

    Article  ADS  Google Scholar 

  36. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B: Condens. Matter 21, 3976 (1980).

    Article  ADS  Google Scholar 

  37. Ch. Holm and W. Janke, Phys. Rev. B: Condens. Matter 48, 936 (1993).

    Article  ADS  Google Scholar 

  38. R. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982; Mir, Moscow, 1985).

    Book  MATH  Google Scholar 

  39. G. Musial and J. Rogiers, Phys. Status Solidi B 243, 335 (2006).

    Article  ADS  Google Scholar 

  40. M. J. George and J. J. Rehr, Phys. Rev. Lett. 53, 2063 (1984).

    Article  ADS  Google Scholar 

  41. R. Guida and J. Zinn-Justin, Nucl. Phys. B 489, 626 (1997).

    Article  ADS  Google Scholar 

  42. M. Campostrini, A. Pelissetto, P. Ross, and E. Vicari, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 3526 (1999).

    Article  Google Scholar 

  43. M. Hasenbusch, K. Pinn, and S. Vinti, Phys. Rev. B: Condens. Matter 59, 11471 (1999).

    Article  ADS  Google Scholar 

  44. H. W. J. Blote, E. Luijten, and J. R. Heringa, J. Phys. A: Math. Gen. 28, 6289 (1995).

    Article  ADS  Google Scholar 

  45. H. W. J. Blote, L. N. Shchur, and A. L. Talapov, Int. J. Mod. Phys. C 10, 137 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Ramazanov.

Additional information

Original Russian Text © A.K. Murtazaev, M.K. Ramazanov, D.R. Kurbanova, M.K. Badiev, Ya.K. Abuev, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 6, pp. 1082–1088.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtazaev, A.K., Ramazanov, M.K., Kurbanova, D.R. et al. A study of the critical properties of the Ising model on body-centered cubic lattice taking into account the interaction of next behind nearest neighbors. Phys. Solid State 59, 1103–1109 (2017). https://doi.org/10.1134/S1063783417060166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417060166

Navigation