Advertisement

Physics of the Solid State

, Volume 59, Issue 4, pp 766–772 | Cite as

Phonon spectra and the one-phonon and two-phonon densities of states of UO2 and PuO2

  • A. S. Poplavnoi
  • T. P. Fedorova
  • I. A. Fedorov
Lattice Dynamics

Abstract

The vibrational spectra of uranium dioxide UO2 and plutonium dioxide PuO2, as well as the one-phonon densities of states and thermal occupation number weighted two-phonon densities of states, have been calculated within the framework of the phenomenological rigid ion model. It has been shown that the acoustic and optical branches of the spectra are predominantly determined by vibrations of the metal and oxygen atoms, respectively, because the atomic masses of the metal and oxygen differ from each other by an order of magnitude. On this basis, the vibrational spectra can be represented in two Brillouin zones, i.e., in the Brillouin zone of the crystal and the Brillouin zone of the oxygen sublattice. In this case, the number of optical branches decreases by a factor of two. The two-phonon densities of states consist of two broad structured peaks. The temperature dependences of the upper peak exhibit a thermal broadening of the phonon lines L01 and L02 in the upper part of the optical branches. The lower peak is responsible for the thermal broadening of the lowest two optical (T02, T01) and acoustic (LA, TA) branches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://en.wikipedia.org/wiki/Nuclear_fuel.Google Scholar
  2. 2.
    G. Dolling, R. A. Cowley, and A. D. B. Woods, Can. J. Phys. 43 (8), 1397 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    J. D. Axe and G. D. Petit, Phys. Rev. 151 (2), 676 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    K. Clausen, W. Hayes, M. T. Hutchings, J. E. Macdonald, R. Osborn, and P. Schnabel, Rev. Phys. Appl. 19 (9), 719 (1984).CrossRefGoogle Scholar
  5. 5.
    K. Clausen, W. Hayes, J. E. Macdonald, R. Osborn, P. Schnabel, M. T. Hutchings, and A. Magerl, J. Chem. Soc., Faraday Trans. 2 83 (7), 1109 (1987).CrossRefGoogle Scholar
  6. 6.
    A. Jayaraman, G. A. Kourouklis, and Van L. G. Uitert, Pramana J. Phys. 30 (3), 225 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    P. Ruello, L. Desgranges, G. Baldinozzi, G. Calvarin, T. Hausen, G. Petot-Ervas, and C. Petot, J. Phys. Chem. Solids 66 (5), 823 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    V. Sobolev, J. Nucl. Mater. 344 (1–3), 198 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    Q. Yin and S. Y. Savrasov, Phys. Rev. Let. 100 (22), 225504 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    S. Minamoto, M. Kato, K. Konashi, and Y. Kawazoe, J. Nucl. Mater. 385 (1), 18 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    B. T. Wang, H. Shi, W. Li, and P. Zhang, J. Nucl. Mater. 399 (2–3), 181 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    B. T. Wang, H. Shi, W. Li, and P. Zhang, Phys. Rev. B: Condens. Matter 81 (4), 045119 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. S. Poplavnoi and T. P. Fedorova, Russ. Phys. J. 53 (4), 766 (2010).CrossRefGoogle Scholar
  14. 14.
    A. S. Poplavnoi and T. P. Fedorova, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 5, 60 (2010).Google Scholar
  15. 15.
    K. Kurosaki, K. Yamada, M. Uno, S. Yamanaka, K. Yamamoto, and T. Namekawa, J. Nucl. Mater. 294 (1–2), 160 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    S. I. Potashnikov, A. S. Boyarchenkov, K. A. Nekrasov, and A. Ya. Kupryazhkin, Al’tern. Energ. Ekol. 52 (8), 43 (2007).Google Scholar
  17. 17.
    L. Van Brutzel, A. Chartier, and J. P. Crocombette, Phys. Rev. B: Condens. Matter 78 (2), 024111 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    K. Govers, S. Lemehov, M. Hou, and M. Verwerft, J. Nucl. Mater. 376 (1), 66 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    A. S. Poplavnoi, Russ. Phys. J. 51 (7), 692 (2008).CrossRefGoogle Scholar
  20. 20.
    B. T. M. Willis, Proc. R. Soc. London, Ser. A 274, 134 (1963).ADSCrossRefGoogle Scholar
  21. 21.
    A. W. Pryor, J. Phys. Chem. Solids 26, 2045 (1965).ADSCrossRefGoogle Scholar
  22. 22.
    K. D. Rouse, B. T. M. Willis, and A. W. Pryor, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 24, 117 (1968).CrossRefGoogle Scholar
  23. 23.
    G. J. Hyland and A. M. Stoneham, J. Nucl. Mater. 96 (1), 1 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    R. Caciuffo, G. H. Lander, J. C. Spirlet, Y. M. Fournier, and W. F. Kuhs, Solid State Commun. 64 (1), 149 (1987).ADSCrossRefGoogle Scholar
  25. 25.
    T. Sato and S. Tateyama, Phys. Rev. B: Condens. Matter 26 (4), 2257 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 49 (23), 16223 (1994).ADSCrossRefGoogle Scholar
  27. 27.
    A. A. Maradudin and P. A. Flinn, Phys. Rev. 129 (6), 2529 (1963).ADSCrossRefGoogle Scholar
  28. 28.
    I. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Phys. Rev. 155 (3), 882 (1967).ADSCrossRefGoogle Scholar
  29. 29.
    R. P. Lowndes, J. Phys. C: Solid State Phys. 4, 3083 (1971).ADSCrossRefGoogle Scholar
  30. 30.
    K. Schmalzl, D. Strauch, and H. Schober, Phys. Rev. B: Condens. Matter. 68 (23), 144301 (2003).ADSCrossRefGoogle Scholar
  31. 31.
    R. G. D. Valle and G. Cardini, Phys. Rev. Lett. 59 (19), 2196 (1987).ADSCrossRefGoogle Scholar
  32. 32.
    K. Wakamura, Phys. Rev. B: Condens. Matter 56 (18), 11593 (1977).ADSCrossRefGoogle Scholar
  33. 33.
    K. Wakamura, Phys. Rev. B: Condens. Matter 59 (2), 3560 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    T. P. Fedorova and A. S. Poplavnoi, Izv. Vyssh. Uchebn. Zaved., Fiz. 56 (8/3), 138 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Poplavnoi
    • 1
  • T. P. Fedorova
    • 1
  • I. A. Fedorov
    • 1
  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations