Skip to main content
Log in

Energy spectrum of holes in Sb2Te2.9Se0.1 solid solution according to the data on the transfer phenomena

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependence of the Hall coefficient of a single crystal of the p-Sb2Te2.9Se0.1 solid solution grown by the Czochralski technique is studied in the temperature range 77–450 K. The data on the Hall coefficient of the p-Sb2Te2.9Se0.1 are analyzed in combination with the data on the Seebeck and Nernst–Ettingshausen effects and the electrical conductivity with allowance for interband scattering. From an analysis of the temperature dependences of the four kinetic coefficients, it follows that, at T < 200 K, the experimental data are qualitatively and quantitatively described in terms of the one-band model. At higher temperatures, a complex structure of the valence band and the participation of the second-kind additional carriers (heavy holes) in the kinetic phenomena should be taken into account. It is shown that the calculations of the temperature dependences of the Seebeck and Hall coefficients performed in the two-band model agree with the experimental data with inclusion of the interband scattering when using the following parameters: effective masses of the density of states of light holes m * d1 ≈ 0.5m 0 (m 0 is the free electron mass) and heavy holes m * d2 ≈ 1.4m 0, the energy gap between the main and the additional extremes of the valence band ΔE v ≈ 0.14 eV that is weakly dependent on temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, I. R. Zhang, S. C. Fisher, Z. Hussian, and Z.-X. Shen, Science (Washington) 178, 5937 (2009).

    Google Scholar 

  2. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    Article  Google Scholar 

  3. S. B. Eremeev, Yu. M. Koroteev, and E. B. Chulkov, JETP Lett. 91 (8), 387 (2010).

    Article  ADS  Google Scholar 

  4. K. Kuroda, M. Arita, K. Miyamoto, M. Ye, J. Jiang, A. Kimura, E. E. Krasovskii, E. V. Chylkov, H. Iwasawa, T. Okuda, K. Shimada, Y. Ueda, H. Namatame, and M. Taniguchi, Phys. Rev. Lett. 105 (7), 076802 (2010).

    Article  ADS  Google Scholar 

  5. M. Wuttig and M. Yamada, Nat. Mater. 6, 824 (2007).

    Article  ADS  Google Scholar 

  6. C. Peng, Z. T. Song, F. Rao, L. C. Wu, M. Zhu, H. Song, B. Liu, X. Zhou, D. Yao, P. Yang, and J. Chu, Appl. Phys. Lett. 99 (4), 043105 (2011).

    Article  ADS  Google Scholar 

  7. G. Leimkuhler, I. Kerkamm, and R. Reineke-Koch, J. Electrochem. Soc. 149, 474 (2002).

  8. B. M. Gol’tsman, V. A. Kudinov, and I. A. Smirnov, Semiconductor Thermoelectric Materials Based on Bi2Te3 (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  9. G. J. Snyder and E. S. Tobere, Nat. Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  10. L. M. Goncalve, P. Alpuim, A. G. Rolo, and G. H. Correia, Thin Solid Films 519, 4152 (2011).

    Article  ADS  Google Scholar 

  11. T. Liu, H. Deng, H. Cao, W. Zhou, J. Zhang. J. Liu, P. Yang, and J. Chu, J. Cryst. Growth 416 (15), 78 (2015).

    Article  ADS  Google Scholar 

  12. T. E. Svechnikova, L. E. SHelimova, P. P. Konstantinov, M. A. Kretova, E. S. Avilov, V. S. Zemskov, C. Stiewe, A. Zuber, and E. Müller, Inorg. Mater. 41 (10), 1043 (2005).

  13. L. D. Ivanova, L. E. Petrova, Yu. V. Granatkina, V. S. Zemskov, O. B. Sokolov, S. Ya. Skipidarov, V. A. Kurganov, and V. V. Podbel’skii, Inorg. Mater. 47 (5), 459 (2011).

    Article  Google Scholar 

  14. S. A. Nemov, N. M. Blagikh, A. Allahkhah, and L. D. Ivanova, Semiconductors 49 (10), 1302 (2015).

    Article  ADS  Google Scholar 

  15. S. A. Nemov, G. L. Tarantasov, V. I. Proshin, M. K. Zhitinskaya, L. D. Ivanova, and Yu. V. Granatkina, Semiconductors 43 (12), 1585 (2009).

    Article  ADS  Google Scholar 

  16. M. K. Zhitinskaya, V. I. Kaidanov, and I. A. Chernik, Sov. Phys. Solid State 8 (1), 246 (1966).

    Google Scholar 

  17. A. von Middendorff, K. Dietrich, and G. Landwehr, Solid State Commun. 13, 443 (1973).

    Article  ADS  Google Scholar 

  18. L. N. Luk’yanova, V. A. Kutasov, and P. P. Konstantinov, Phys. Solid State 47 (2), 233 (2005).

    Article  ADS  Google Scholar 

  19. N. V. Kolomoets, Sov. Phys. Solid State 8 (4), 799 (1966).

    Google Scholar 

  20. S. A. Nemov, N. M. Blagikh, N. S. Dema, M. K. Zhitinskaya, V. I. Proshin, T. E. Svechnikova, and L. E. Shelimova, Semiconductors 46 (4), 447 (2012).

    Article  ADS  Google Scholar 

  21. S. A. Nemov, N. M. Blagikh, and L. D. Ivanova, Phys. Solid State 56 (9), 1754 (2014).

    Article  ADS  Google Scholar 

  22. L. S. Stil’bans, Physics of Semiconductors (Sovetskoe Radio, Moscow, 1967) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nemov.

Additional information

Original Russian Text © S.A. Nemov, N.M. Blagikh, A.A. Allakhkhakh, L.D. Ivanova, M.B. Dzhafarov, A.E. Demchenko, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 11, pp. 2208–2211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemov, S.A., Blagikh, N.M., Allakhkhakh, A.A. et al. Energy spectrum of holes in Sb2Te2.9Se0.1 solid solution according to the data on the transfer phenomena. Phys. Solid State 58, 2290–2293 (2016). https://doi.org/10.1134/S1063783416110275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416110275

Navigation