Skip to main content
Log in

Exchange interaction in pyrochlore vanadates Lu2V2O7 and Y2V2O7: Ab initio approach

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The exchange interaction in vanadates with the pyrochlore structure, namely, Lu2V2O7 and Y2V2O7, has been investigated using the first-principles approach. The isotropic exchange coupling constants have been determined. The calculations have been performed within the unrestricted Hartree–Fock (UHF) approximation, as well as in the framework of the density functional theory (DFT), using hybrid functionals. It has been shown that, in the description of the exchange interaction in the compounds under investigation, the nonlocal Hartree–Fock exchange should be taken into account. The splitting patterns of the 3d 1 level of the V4+ ion in the crystal field have been obtained within the model approach. The calculation has been carried out in the approximation of point charges taking into account the spin–orbit interaction. It has been revealed that the “orbital liquid” state cannot be observed in the compounds under investigation, because the exchange interaction energy is significantly less than the energy spacing between the ground state and the first excited state. The orbital ordering has been analyzed, and the spin density maps have been constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Garden, M. J. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

    Article  ADS  Google Scholar 

  2. G. T. Knoke, A. Niazi, J. M. Hill, and D. C. Johnston, Phys. Rev. B: Condens. Matter 76, 054439 (2007).

    Article  ADS  Google Scholar 

  3. Y. Yamashita and K. Ueda, Phys. Rev. Lett. 85, 4960 (2000).

    Article  ADS  Google Scholar 

  4. S. Shamoto, T. Nakano, Y. Nozue, and T. Kajitani, J. Phys. Chem. Solids 63, 1047 (2002).

    Article  ADS  Google Scholar 

  5. Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, and Y. Tokura, Science (Washington) 329 (5889), 297 (2010).

    Article  ADS  Google Scholar 

  6. G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 (2005).

    Article  ADS  Google Scholar 

  7. V. A. Chernyshev, V. P. Petrov, and A. E. Nikiforov, Phys. Solid State 57 (5), 996 (2015).

    Article  ADS  Google Scholar 

  8. O. Kahn, Molecular Magnetism (Wiley, New York, 1993).

    Google Scholar 

  9. http://www.crystal.unito.it/.

  10. V. G. Tsirel’son, Quantum Chemistry: Molecules, Molecular Systems, and Solids (Binom, Moscow, 2010) [in Russian].

    Google Scholar 

  11. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  12. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).

    Article  Google Scholar 

  13. R. A. Evarestov and A. V. Bandura, Ross. Khim. Zh. LI 5), 149 (2007).

    Google Scholar 

  14. J. Muscat, A. Wander, and N. M. Harrison, Chem. Phys. Lett. 342, 397 (2001).

    Article  ADS  Google Scholar 

  15. R. A. Evarestov, A. V. Bandura, and V. E. Aleksandrov, Phys. Solid State 47 (12), 2248 (2005).

    Article  ADS  Google Scholar 

  16. http://www.crystal.unito.it/basis-sets.php.

  17. M. Dolg, H. Stoll, A. Savin, and H. Preuss, Theor. Chim. Acta 75, 173 (1989).

    Article  Google Scholar 

  18. http://www.tc.uni-koeln.de/PP/clickpse.en.html.

  19. I. I. Leonidov, V. P. Petrov, V. A. Chernyshev, A. E. Nikiforov, E. G. Vovkotrub, A. P. Tyutynnik, and V. G. Zubkov, J. Phys. Chem. C 118, 8090 (2014). http://pubs.acs.org/doi/suppl/10.1021/jp410492a.

    Article  Google Scholar 

  20. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).

    Article  ADS  Google Scholar 

  21. A. A. Haghighirad, G. Gross, and W. Assmus, J. Cryst. Growth 310, 2277 (2008).

    Article  ADS  Google Scholar 

  22. G. V. Bazuev, A. A. Samokhvalov, Yu. N. Morozov, I. I. Matveenko, V. S. Babushkin, T. I. Arbuzova, and G. P. Shveikin, Sov. Phys. Solid State 19 (11), 1913 (1977).

    Google Scholar 

  23. M. Mena, R. S. Perry, T. G. Perring, M. D. Le, S. Guerrero, M. Storni, D. T. Adroja, Ch. Rüegg, and D. F. McMorrow, Phys. Rev. Lett. 113, 047202 (2014).

    Article  ADS  Google Scholar 

  24. H. J. Xiang, E. J. Kan, M.-H. Whangbo, C. Lee, Su-Huai Wei, and X. G. Gong, Phys. Rev. B: Condens. Matter 83 (17), 174402 (2011).

    Article  ADS  Google Scholar 

  25. A. A. Biswas and Y. M. Jana, J. Magn. Magn. Mater. 329, 118 (2013).

    Article  ADS  Google Scholar 

  26. L. Zhang, J. Ren, J.-S. Wang, and B. Li, Phys. Rev. B: Condens. Matter 87 (14), 144101 (2013).

    Article  ADS  Google Scholar 

  27. S. Shamoto, H. Tazawa, Y. Ono, T. Nakano, Y. Nozue, and T. Kajitani, J. Phys. Chem. Solids 62, 325 (2001).

    Article  ADS  Google Scholar 

  28. H. Ichikawa, L. Kano, M. Saitoh, S. Miyahara, N. Furukawa, J. Akimitsu, T. Yokoo, T. Matsumura, M. Takeda, and K. Hirota, J. Phys. Soc. Jpn. 74, 1020 (2005).

    Article  ADS  Google Scholar 

  29. L. Balents, Nature (London) 464 (7286), 199 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Nazipov.

Additional information

Original Russian Text © D.V. Nazipov, A.E. Nikiforov, V.A. Chernyshev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 1921–1925.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazipov, D.V., Nikiforov, A.E. & Chernyshev, V.A. Exchange interaction in pyrochlore vanadates Lu2V2O7 and Y2V2O7: Ab initio approach. Phys. Solid State 58, 1989–1994 (2016). https://doi.org/10.1134/S1063783416100255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416100255

Navigation