Skip to main content
Log in

Structural, electronic, magnetic and optical properties of protactinium oxides from density functional theory

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, electronic, magnetic and optical properties of protactinium oxides (PaO and PaO2) have been studied within the framework of all-electron full potential linear augmented plane wave method of density functional theory. We apply the local spin density approximation/Perdew–Burke–Ernzerhof generalized gradient approximation (LSDA/PBE) + U with spin–orbit coupling (SOC) formalism to these compounds and compare them with the calculations of Obodo et al. (J Phys Condens Matter 25: 145603, 2013). Whereas a good agreement is obtained for PaO, our PBE and PBE + U (SOC) results differ from this study in the case antiferromagnetic (AFM) of PaO2. By choosing the Hubbard U parameter around 4.0 eV, 1.42 eV band gap for PaO2 is in good agreement with Prodan et al. (Phys. Rev. B 76: 033101, 2007). In particular, our simulations performed at PBE + U and PBE + U (SOC) levels both describe an increase in the band gap for PaO2 when increasing U. Finally, the frequency-dependent dielectric functions and optical properties of PaO2 are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K T Moore and G van der Laan Rev. Modern Phys.81 235 (2009)

  2. E Manos, M Kanatzidis and J Ibers (Springer: Dordrecht The Netherlands 2010)

    Google Scholar 

  3. P A Sellers, S Fried, R E Elson and W Zachariasen Journal of the American Chemical Society76 5935 (1954)

    Article  Google Scholar 

  4. M F Islam and A K Ray Solid State Commun.150 938 (2010)

    Article  ADS  Google Scholar 

  5. P Söderlind, G Kotliar, K Haule, P M Oppeneer and D Guillaumont MRS Bull.35 883 (2010)

    Article  Google Scholar 

  6. A Liechtenstein, V Anisimov and J Zaanen Phys. Rev. B52 R5467 (1995)

    Article  Google Scholar 

  7. S Dudarev, G Botton, S Savrasov, C Humphreys and A Sutton Phys. Rev. B57 1505 (1998)

    Article  Google Scholar 

  8. I D Prodan, G E Scuseria and R L Martin Phys. Rev. B76 033101 (2007)

    Article  Google Scholar 

  9. J Heyd, G E Scuseria and M Ernzerhof J. Chem. Phys.118 8207 (2003.

    ADS  Google Scholar 

  10. J Heyd and G E Scuseria J. Chem. Phys.121 1187 (2004)

    Article  ADS  Google Scholar 

  11. X D Wen et al. J. Chem. Phys.137 154707 (2012)

    Article  ADS  Google Scholar 

  12. K O Obodo and N Chetty J. Phys. Condens Matter25 145603 (2013)

    Article  ADS  Google Scholar 

  13. O K Andersen Phys. Rev. B12 3060 (1975)

  14. I E Gas Phys. Rev. B136 864 (1964)

  15. W Kohn and L J Sham Phys. Rev.140 A1133 (1965)

    Article  ADS  Google Scholar 

  16. P Blaha, K Schwarz, G Madsen, D Kvasnicka and J Luitz An augmented plane wave + local orbitals program for calculating crystal properties 2001)

  17. J P Perdew, K Burke and M Ernzerhof Phys. Rev. L77 3865 (1996)

    Google Scholar 

  18. F Wooten Opt. Prop. Solids28, 803 (1973)

  19. H Shi, M Chu and P Zhang J. Nucl. Mates.400 151 (2010)

    Article  ADS  Google Scholar 

  20. J Schoenes Phys. Rep.63 301 (1980)

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (NO. 21771167).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Gao or B Y Ao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Li, S.C., Gao, T. et al. Structural, electronic, magnetic and optical properties of protactinium oxides from density functional theory. Indian J Phys 94, 53–60 (2020). https://doi.org/10.1007/s12648-019-01457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01457-z

Keywords

PACS Nos.

Navigation