Skip to main content
Log in

Study of ferrite Co1 + x Ti x Fe2–2x O4 (0.2 < x < 0.5) nanoparticles for magnetic hyperthermia

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (MNPs) of Co1 + x Ti x Fe2–2x O4 (0.2 < x < 0.5) ferrite spinel with an average diameter of ~12 nm in a SiO2 shell are obtained by “wet” chemical synthesis and studied by X-ray diffraction, magnetic, and Mössbauer methods. Based on the data on the MNP released heat as a function of the applied external alternating magnetic field (EAMF) strength and frequency, the particle heating mechanisms are studied. The imaginary part of the magnetic susceptibility χ″ identical to the MNP heat release is analyzed at room temperature in an EAMF of strength 1 Oe and a frequency of 100 Hz. The χ″ maximum temperature decreases with increasing Ti content in CoTi spinel. An increase in the temperature by ~10 K was observed in an EAMF of frequency 10 kHz and a strength of 300 Oe. The temperature increase rate ΔT/dt was measured in the range from 0.001 to 0.008 K/s depending on the EAMF frequency and sample composition. It is found that Co1 + x Ti x Fe2–2x O4 MNPs synthesized at 0.2 < x < 0.5 satisfy the requirements imposed on materials used as heat sources during magnetic hyperthermia. Based on measurements of the magnetic susceptibility in an EAMF and Mössbauer studies, it is shown that CoTi ferrite MNPs with a titanium ion content x = 0.3, i.e., Co1.3Ti0.3Fe1.4O4, are most efficient for magnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fatemeh Zeinali Sehrig, Sima Majidi, Nasrin Nikzamir, Nasim Nikzamir, Mohammad Nikzamir, and Abolfazl Akbarzadeh, Artif. Cells Nanomed. Biotechnol. (2015). doi 10.3109/21691401.2014.998832

  2. E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, and F. J. Teran, Appl. Phys. Rev. 2, 041302 (2015).

    Article  Google Scholar 

  3. S.-N. Sun, C. Wei, Z.-Z. Zhu, Y.-L. Hou, S. S. Venkatramana, and Z.-C. Xu, Chin. Phys. B 23 (3), 037503 (2014).

    Article  ADS  Google Scholar 

  4. A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).

    Article  ADS  Google Scholar 

  5. S. Behrens, Nanoscale 3, 877 (2011).

    Article  ADS  Google Scholar 

  6. A. Mahapatro, Mater. Sci. Eng., C 55, 227 (2015).

    Article  Google Scholar 

  7. Y. Ichiyanagi, D. Shigeoka, T. Hiroki, T. Mashino, S. Kimura, A. Tomitaka, K. Ueda, and Y. Takemura, Thermochim. Acta 532, 123 (2012).

    Article  Google Scholar 

  8. A. S. Kamzin, Phys. Solid State 58 (3), 532 (2016).

    Article  ADS  Google Scholar 

  9. A. S. Teja and P.-Y. Koh, Prog. Cryst. Growth Charact. Mater. 55, 22 (2009).

    Article  Google Scholar 

  10. I. S. Poperechny, Yu. L. Raikher, and V. I. Stepanov, Phys. Rev. B: Condens. Matter 82, 174423 (2010).

    Article  ADS  Google Scholar 

  11. Y. Ichiyanagi, S. Moritake, S. Taira, and M. Setou, J. Magn. Magn. Mater. 310, 2877 (2007).

    Article  ADS  Google Scholar 

  12. S. Moritake, S. Taira, T. Hatanaka, M. Setou, and Y. Ichiyanagi, e-J. Surf. Sci. Nanotechnol. 5, 60 (2007).

    Article  Google Scholar 

  13. T. Hiroki, S. Taira, H. Katayanagi, Y. Moro, D. Shigeoka, S. Kimura, T. Mashino, and Y. Ichiyanagi, J. Phys.: Conf. Ser. 200, 122003 (2010).

    ADS  Google Scholar 

  14. S. Taira, S. Moritake, Y. Kai, T. Hatanaka, Y. Ichiyanagi, and M. Setou, e-J. Surf. Sci. Nanotechnol. 5, 23 (2007).

    Article  Google Scholar 

  15. L. Y. Zhang, H. C. Gu, and X. M. Wang, J. Magn. Magn. Mater. 311, 228 (2007).

    Article  ADS  Google Scholar 

  16. E. A. S. Sikma, H. M. Joshi, Q. Ma, K. W. MacRenaris, A. L. Eckermann, V. P. Dravid, and T. J. Meade, Chem. Mater. 23, 2657 (2011).

    Article  Google Scholar 

  17. J. M. Vargas, A. Srivastava, A. Yourdkhani, L. Zaldivar, G. Caruntu, and L. Spinu, J. Appl. Phys. 110, 064304 (2011).

  18. M. Veverka, P. Veverka, O. Kaman, A. Lancok, K. Zaveta, E. Pollert, K. Knizek, J. Bohacek, M. Benes, P. Kaspar, E. Duget, and S. Vasseur, Nanotechnology 18, 345704 (2007).

    Article  Google Scholar 

  19. D. H. Kim, D. E. Nickles, D. T. Johnson, and C. S. Brazel, J. Magn. Magn. Mater. 320, 2390 (2008).

    Article  ADS  Google Scholar 

  20. H. M. Joshi, Y. P. Lin, M. Aslam, P. V. Prasad, E. A. S. Sikma, R. Edelman, T. Meade, and V. P. Dravid, J. Phys. Chem. C 113, 17761 (2009).

  21. K. Yosida and M. Tachiki, Prog. Theor. Phys. 17, 331 (1957).

    Article  ADS  Google Scholar 

  22. V. A. M. Brabers, Phys. Rev. Lett. 68, 3113 (1992).

    Article  ADS  Google Scholar 

  23. C. R. Alves, R. Aquino, J. Depeyrot, T. A. P. Cotta, M. H. Sousa, F. A. Tourinho, H. R. Rechenberg, and G. F. Goya, J. Appl. Phys. 99, 08M905 (2006).

    Article  Google Scholar 

  24. M. Verveka, Z. Jirak, O. Kaman, K. Knizek, M. Marysko, E. Pollert, K. Zaveta, A. Lancok, M. Dlouha, and S. Vratislav, Nanotechnology 22, 345701 (2011).

    Article  Google Scholar 

  25. M. A. G. Soler, E. C. D. Lima, S. W. Silva, T. F. O. Melo, A. C. M. Pimenta, J. P. Sinnecker, R. B. Azevedo, V. K. Garg, A. C. Oliveira, M. A. Novak, and P. C. Morais, Langmuir 23, 9611 (2007).

    Article  Google Scholar 

  26. C. L. Dennis, A. J. Jackson, J. A. Borchers, P. J. Hoopes, R. Strawbridge, A. R. Foreman, J. van Lierop, C. Grüttner, and R. Ivkov, Nanotechnology 20, 395103 (2009).

    Article  Google Scholar 

  27. V. G. Semenov and V. V. Panchuk, MossFit: Mössbauer Spectrum Analysis and Database Software, personal communication.

  28. V. D. Sudheesh, H. Bhargava, O. Suwalka, N. Lakshmi, V. R. Reddy, K. Venugopalan, and A. Gupta, Hyperfine Interact. 199, 403 (2011).

    Article  ADS  Google Scholar 

  29. G. A. Pettit and D. W. Forester, Phys. Rev. B: Solid State 4, 3912 (1971).

    Article  ADS  Google Scholar 

  30. K. Krieble, C. C. H. Lo, Y. Melikhov, and J. E. Snyder, J. Appl. Phys. 99, 08M912 (2006).

    Article  Google Scholar 

  31. R. K. Sharma, V. Sebastian, N. Lakshmi, K. Venugopalan, V. R. Reddy, and A. Gupta, Phys. Rev. B: Condens. Matter 75, 144419 (2007).

    Article  ADS  Google Scholar 

  32. S. Mørup, J. A. Dumesic, and H. Topsøe, in Applications of Mössbauer Spectroscopy, Ed. by R. L. Cohen (Academic, New York, 1980), Vol. II, p. 1.

  33. K. Haneda and A. H. Morrish, J. Appl. Phys. 63, 4258 (1988).

    Article  ADS  Google Scholar 

  34. A. H. Morrish, K. Haneda, and P. J. Schurer, J. Phys., Colloq. 37, C6 (1976).

    Article  Google Scholar 

  35. K. Haneda, Can. J. Phys. 65, 12 (1987).

    Article  Google Scholar 

  36. D. Lin, A. C. Nunes, C. F. Majkrzak, and A. E. Berkowitz, J. Magn. Magn. Mater. 145, 4078 (2001).

    Google Scholar 

  37. J. Leitner, P. Chuchivalec, D. Sedmidubsky, A. Strejc, and P. Abrman, Thermochim. Acta 395, 27 (2003).

    Article  Google Scholar 

  38. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36, 167 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Additional information

Original Russian Text © A.S. Kamzin, Y. Ichiyanagi, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 2026–2033.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Ichiyanagi, Y. Study of ferrite Co1 + x Ti x Fe2–2x O4 (0.2 < x < 0.5) nanoparticles for magnetic hyperthermia. Phys. Solid State 58, 2101–2108 (2016). https://doi.org/10.1134/S106378341610019X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341610019X

Navigation