Skip to main content
Log in

Photo-induced current transient spectroscopy of defects in single crystals of synthetic diamond

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The kinetics of photocurrent relaxation in synthetic diamond single crystals with an electrical resistivity of ∼1014 Ω · cm in the temperature range of 440–550 K has been investigated. It has been found that there are two processes of thermal emission of charge carriers, which are detected simultaneously. The suppression of the contribution to the relaxation from one of the processes with an increase in the temperature has been interpreted as the formation of a coupling between the detected processes. The possibilities of the mutual influence between the processes of charge carrier emission have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Muret, J. Pernot, A. Kumar, L. Magaud, C. Mer- Calfati, and P. Bergonzo, Phys. Rev. B: Condens. Matter 81, 235205 (2010).

    Article  ADS  Google Scholar 

  2. W. Adam, C. Bauer, E. Berdermann, P. Bergonzo, F. Bogani, E. Borchi, A. Brambilla, M. Bruzzi, C. Colledani, J. Conway, W. Dabrowski, P. Delpierre, A. Deneuville, W. Dulinski, B. van Eijk, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 434, 131 (1999).

    Article  ADS  Google Scholar 

  3. E. Pace and A. De Sio, Nucl. Instrum. Methods Phys. Res., Sect. A 514, 93 (2003).

    Article  ADS  Google Scholar 

  4. C. Descamps, D. Tromson, C. Mer, M. Nesladek, P. Bergonzo, and M. Benabdesselam, Phys. Status Solidi A 203, 3161 (2006).

    Article  ADS  Google Scholar 

  5. S. F. Kozlov, in Diamond in Electronics, Ed. by V. B. Kvaskov (Energoatomizdat, Moscow, 1990) [in Russian].

  6. S. P. Plotnikova, in Diamond in Electronics, Ed. by V. B. Kvaskov (Energoatomizdat, Moscow, 1990) [in Russian].

  7. N. M. Kazyuchits, E. V. Naumchik, M. S. Rusetskii, E Gaubas, V. Kalendra, and A. Jasiunas, in Proceedings of the 9th Belarusian–Russian Workshop “Semiconductor Lasers and Systems,” Minsk, May 28–31, 2013, p. 229.

  8. Yu. S. Mukhachev, V. C. Tatarinov, and S. Yu. Borzenko, Sov. Phys. Semicond. 18 (3), 286 (1984).

    Google Scholar 

  9. J. P. Goss, P. R. Briddon, M. J. Rayson, S. J. Sque, and R. Jones, Phys. Rev. B: Condens. Matter 72, 035214 (2005).

    Article  ADS  Google Scholar 

  10. J. Shim, E.-K. Lee, Y. J. Lee, and R. M. Nieminen, Phys. Rev. B: Condens. Matter 71, 035206 (2005).

    Article  ADS  Google Scholar 

  11. Ch. Hurter, M. Boilou, A. Mitonneau, and D. Bois, Appl. Phys. Lett. 32, 821 (1978).

    Article  ADS  Google Scholar 

  12. V. E. Khadzhi, L. I. Tsinober, and L. M. Shterenlikht, Synthesis of Minerals (Nedra, Moscow, 1987), Vol. 1.

    Google Scholar 

  13. http://www.adamas.by.

  14. V. B. Kvaskov, Natural Diamonds of Russia (Polyaron, Moscow, 1997), p. 304 [in Russian].

    Google Scholar 

  15. A. P. Odrinskii, N. M. Kazyuchits, and L. F. Makarenko, Izv. Nats. Akad. Nauk Belarusi, Ser. Fiz.–Mat. Nauk, No. 4, 102 (2014).

    Google Scholar 

  16. A. P. Odrinsky, Semiconductors 49 (3), 285 (2015).

    Article  ADS  Google Scholar 

  17. D. Tromson, P. Bergonzo, A. Brambilla, C. Mer, F. Foulon, and V. N. Amosov, J. Appl. Phys. 87, 3360 (2000).

    Article  ADS  Google Scholar 

  18. M. Bruzzi, D. Menichelli, S. Sciortino, and L. Lombardi, J. Appl. Phys. 91, 5765 (2002).

    Article  ADS  Google Scholar 

  19. S. M. Hearne, E. Trajkov, D. N. Jamieson, J. E. Butler, and S. Prawer, J. Appl. Phys. 99, 113703 (2006).

    Article  ADS  Google Scholar 

  20. J. Alvarez, A. Godar, J. P. Kleider, P. Bergonzo, D. Tromson, E. Snidero, C. Mer, E. Rzepka, and H. Cheverry, Diamond Relat. Mater. 13, 881 (2004).

    Article  ADS  Google Scholar 

  21. M. Bruzzi, D. Menichelli, S. Pirollo, and S. Sciortino, Diamond Relat. Mater. 9, 1081 (2000).

    Article  ADS  Google Scholar 

  22. M. Bruzzi, S. Miglio, S. Pirollo, and S. Sciortino, Diamond Relat. Mater. 10, 601 (2001).

    Article  ADS  Google Scholar 

  23. T. Behnke, M. Doucet, N. Ghodbane, A. Imhof, C. Martínez, and W. Zeuner, Nucl. Instrum. Methods Phys. Res., Sect. A 489, 230 (2002).

    Article  ADS  Google Scholar 

  24. P. Muret, J. Pernot, T. Teraji, and T. Ito, Phys. Status Solidi A 205, 2179 (2008).

    Article  ADS  Google Scholar 

  25. J. C. Balland, J. P. Zielinger, C. Noguet, and M. Tapiero, J. Phys. D: Appl. Phys. 19, 57 (1986).

    Article  ADS  Google Scholar 

  26. J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A.J. Whitehead, S. E. Coe, and G. A. Scarsbrook, Science (Washington) 297, 1670 (2002).

    Article  ADS  Google Scholar 

  27. N. M. Kazyuchits, A. V. Konovalova, I. I. Azarko, F. F. Yakotsuk, I. N. Bogdanov, and Yu. K. Kabak, Inorg. Mater. 50 (2), 130 (2014).

    Article  Google Scholar 

  28. A. P. Odrinskii, Semiconductors 39 (6), 629 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Odrinskii.

Additional information

Original Russian Text © A.P. Odrinskii, N.M. Kazyuchits, L.F. Makarenko, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 11, pp. 2212–2217.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odrinskii, A.P., Kazyuchits, N.M. & Makarenko, L.F. Photo-induced current transient spectroscopy of defects in single crystals of synthetic diamond. Phys. Solid State 57, 2279–2285 (2015). https://doi.org/10.1134/S1063783415110244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415110244

Keywords

Navigation