Skip to main content
Log in

Optical and electrical properties of synthetic single-crystal diamond under high-fluence ion irradiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The modification of the (111) face of synthetic diamond under high-fluence (≥1018 ion/cm2) 30-keV Ar+ irradiation is studied experimentally. It is found that ion irradiation at room temperature results in the formation of a low-conductivity surface layer. Heat treatment when the target temperature is increased to 400°C results in a more than ten-fold exponential drop in the layer resistance, as compared to its value at room temperature. If the temperature of the irradiated diamond is increased from 30 to 400°C the layer resistance of the ion-induced conductive layer drops by more than two orders of magnitude to the level corresponding to the conductivity of graphite-like materials. The Raman spectra of the ion-induced conductive surface layer reflect the processes of structural disorder—sp 2-carbon ordering and strong changes in the optical transmittance of diamond after ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Vavilov, V. V. Krasnopevtse., Yu. V. Miljutin, et al., Radiat. Eff. 22, 141 (1974).

    Article  Google Scholar 

  2. R. Kalish, T. Bernsteins, B. Shapiro, and A. Talm., Radiat. Eff. 52, 153 (1980).

    Article  Google Scholar 

  3. S. Sato and M. Iwak., Nucl. Instrum. Methods Phys. Res., Sect. B 32, 145 (1988).

    Article  Google Scholar 

  4. A. A. Gippius, R. A. Khmelnitsky, V. A. Dravin, and A. V. Khomich, Phys. B (Amsterdam, Neth.) 308–310, 573 (2001).

    Article  Google Scholar 

  5. V. L. Kuznetso., Yu. V. Butenko, A. L. Chuvilin, et al., Chem. Phys. Lett. 336, 397 (2001).

    Article  Google Scholar 

  6. S. Rubanov and A. Suvorov., Diamond Relat. Mater. 20, 1160 (2011).

    Article  Google Scholar 

  7. V. P. Popov, L. N. Safronov, O. V. Naumova, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 282, 100 (2012).

    Article  Google Scholar 

  8. P. Philipp, L. Bischoff, U. Treske, et al., Carbon 80, 677 (2014).

    Article  Google Scholar 

  9. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., J. Surf. Invest.: X-ra., Synchrotron Neutron Tech. 9, 346 (2015). doi 10.1134/S1027451015020251

    Article  Google Scholar 

  10. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, et al., Bull. Russ. Acad. Sci.: Phys. 80, 156 (2016). doi 10.3103/S1062873816020040

    Article  Google Scholar 

  11. S. Rubanov, A. Suvorova, V. P. Popov, et al., Diamond Relat. Mater. 63, 143 (2016).

    Article  Google Scholar 

  12. V. G. Nagornyi, A. S. Kotosonov, V. S. Ostrovskii, et al., Properties of Carbon-Based Structural Materials (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  13. E. S. Mashkova and V. A. Molchanov, Medium-Energy Ion Reflection from Solids (North-Holland, Amsterdam, 1985).

    Google Scholar 

  14. J. F. Ziegler and J. P. Biersack, SRIM-2013. http://www.srim.org.

  15. P. Ehrhart, W. Schilling, and H. Ullmaier, in Encyclopedia of Applied Physics, Vol. 15: Power Electronics to Raman Scattering (Wiley-VCH, 1996), p.429.

    Google Scholar 

  16. V. S. Ostrovskii, Foundations of Materials Science for Artificial Graphite (Metallurgizdat, Moscow, 2011) [in Russian].

    Google Scholar 

  17. A. S. Fialkov, Carbon, Interlaminar Bonding and Composites on its Base (Aspekt Press, Moscow, 1997) [in Russian].

    Google Scholar 

  18. A. M. Boriso., Yu. S. Virgil’ev, and E. S. Mashkov., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 52 (2008). doi 10.1134/S1027451008010096

    Google Scholar 

  19. I. A. Dobrinets, V. G. Vins, and A. M. Zaitsev, HPHTTreated Diamonds (Springer, Berlin, Heidelberg, 2013).

    Google Scholar 

  20. C. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology (John Wiley & Sons, New York, 2003).

    Google Scholar 

  21. J. Robertso., Mater. Sci. Eng., R 37, 129 (2002).

    Article  Google Scholar 

  22. E. A. Smorgonskaya, T. K. Zvonareva, E. I. Ivanova, I. I. Novak, and V. I. Ivanov-Omski., Phys. Solid State 45 (9), 1658 (2003).

    Article  Google Scholar 

  23. N. N. Andrianova, A. M. Borisov, V. A. Kazakov, E. S. Mashkova, et al., J. Surf. Invest.: X-ra., Synchrotron Neutron Tech. 9, 237 (2015). doi 10.1134/S1027451015020032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Additional information

Original Russian Text © A.M. Borisov, V.A. Kazakov, E.S. Mashkova, M.A. Ovchinnikov, Yu.N. Palyanov, V.P. Popov, E.A. Shmytkova, 2017, published in Poverkhnost’, 2017, No. 6, pp. 49–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.M., Kazakov, V.A., Mashkova, E.S. et al. Optical and electrical properties of synthetic single-crystal diamond under high-fluence ion irradiation. J. Surf. Investig. 11, 619–624 (2017). https://doi.org/10.1134/S1027451017030211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017030211

Keywords

Navigation