Skip to main content
Log in

Dislocation-kinetic analysis of FCC and BCC crystal spallation under shock-wave loading

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Within the dislocation-kinetic model of the formation and propagation of shock waves in crystals under their intense shock-wave loading, the crystal spallation mechanism at micro- and macrolevels has been discussed taking into account published empirical data. It has been shown that the spallation time t f for Cu, Ni, α-Fe, and Ta crystals in the time interval of 10−6–10−9 s at the macroscopic level changes with variations in the wave pressure σ as \(t_f = \varepsilon _f /\dot \varepsilon = K_f (E/\sigma )^4\), where = \(\dot \varepsilon = K_\sigma (\sigma /E)^4\) is the plastic strain rate according to the Swegle-Grady relation; K f , K σ, and ε f = K f K σ ≈ 3–5% are the pressure-independent spallation coefficients and strain, respectively; and E is the Young’s modulus. At the microlevel, the dislocation-kinetic calculation of plastic zones around pore nuclei as stress concentrators and plastic strain localization regions at the shock wave front has been performed. It has been shown that the pore coalescence and spall fracture formation result from the superposition of shear stresses and plastic deformations in interpore spacings when the latter decrease to a size of the order of two pore sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Antuan, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).

    Google Scholar 

  2. A. G. Perez-Bergquist, E. K. Cerreta, C. P. Trujillo, F. Cao, and G. T. Gray III, Scr. Mater. 65, 1069 (2011).

    Article  Google Scholar 

  3. G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, Phys.— Usp. 50 (8), 771 (2007).

    Google Scholar 

  4. M. A. Meyers, H. Jarmakani, E. M. Bringa, and B. A. Remington, in Dislocations in Solids, Ed. by J. P. Hirth and L. Kubin (Horth-Holland, Amsterdam, 2009), Vol. 15, Chap. 89, p. 96.

    Google Scholar 

  5. A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Phys. Solid State 50 (11), 2069 (2008).

    Article  ADS  Google Scholar 

  6. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, J. Appl. Phys. 90, 136 (2001).

    Article  ADS  Google Scholar 

  7. R. G. Minich, J. U. Cazamias, M. Kumar, and A. J. Schwartz, Metall. Mater. Trans. A 35, 2663 (2004).

    Article  Google Scholar 

  8. V. A. Lubarda, M. S. Shneider, D. H. Kalantar, V. A. Remington, and M. A. Meyers, Acta Mater. 52, 1397 (2004).

    Article  Google Scholar 

  9. Y. Tang, E. M. Bringa, and M. A. Meyers, Acta Mater. 60, 4865 (2012).

    Google Scholar 

  10. P. A. Zhilyaev, A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Phys. Solid State 52 (8), 1619 (2010).

    Article  ADS  Google Scholar 

  11. R. J. Stokes, in Fracture: An Advanced Treatise, Ed. by H. Liebowitz (New York, Academic, 1971; Mir, Moscow, 1976), Part 1, Chap. 3, p. 129.

  12. F. A. McClintock, in Fracture: An Advanced Treatise, Ed. by H. Liebowitz (New York, Academic, 1971; Mir, Moscow, 1976), Vol. 3, Chap. 2, p. 66.

    Google Scholar 

  13. J. W. Swegle and D. Grady, J. Appl. Phys. 58, 692 (1985).

    Article  ADS  Google Scholar 

  14. D. Grady, J. Appl. Phys. 107, 013506 (2010).

    Article  ADS  Google Scholar 

  15. S. V. Razorenov, G. I. Kanel’, G. V. Garkushin, and O. N. Ignatova, Phys. Solid State 54 (4), 790 (2012).

    Article  ADS  Google Scholar 

  16. A. Ya. Uchaev, R. I. Il’ichev, V. T. Punin, S. A. Novikov, L. A. Platonov, and N. I. Sel’chenkova, Vopr. At. Nauki Tekh., Ser.: Materialoved. Novye Mater., No. 1, 246 (2004).

    Google Scholar 

  17. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55 (4), 780 (2013).

    Article  ADS  Google Scholar 

  18. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55 (11), 2280 (2013).

    Article  ADS  Google Scholar 

  19. C. H. Lu, B. A. Remington, B. R. Maddox, B. Cad, H. S. Park, S. T. Prisbrey, and M. A. Meyers, Acta Mater. 60, 6601 (2012).

    Article  Google Scholar 

  20. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 56 (11), 2239 (2014).

    Article  ADS  Google Scholar 

  21. R. W. Armstrong and S. M. Waley, Int. Mater. Rev. 53, 105 (2008).

    Article  Google Scholar 

  22. H. W. Zhang, X. Huang, and N. Hansen, Acta Mater. 56, 5451 (2008).

    Article  Google Scholar 

  23. Z. P. Luo, H. W. Zhang, N. Hansen, and K. Lu, Acta Mater. 60, 1322 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Original Russian Text © G.A. Malygin, S.L. Ogarkov, A.V. Andriyash, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1772–1779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygin, G.A., Ogarkov, S.L. & Andriyash, A.V. Dislocation-kinetic analysis of FCC and BCC crystal spallation under shock-wave loading. Phys. Solid State 57, 1818–1826 (2015). https://doi.org/10.1134/S1063783415090243

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090243

Keywords

Navigation