Skip to main content
Log in

Mechanism of formation of cellular dislocation structures during propagation of intense shock waves in crystals

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The mechanism of formation of a cellular dislocation structure in face-centered cubic (fcc) metal crystals subjected to shock compression at strain rates \(\dot \varepsilon \) > 106 s−1 has been considered theoretically within the dislocation kinetic approach based on the kinetic equation for the dislocation density (dislocation constitutive equation). A dislocation structure of the cellular type is formed in the case of a two-wave structure of the compression wave behind its shock front (elastic precursor). It has been found that, at pressures σ > 10 GPa, the dislocation cell size Λ c depends on the pressure σ and the density ρ G of geometrically necessary dislocations generated at the shock front according to the relationship Λ c ∼ ρ n G ∼ σm, where n = 1/4–1/2, m = 3/4–3/2, and m = 1, for different pressures and orientations of the crystal. It has been shown that, in copper and nickel crystals with the shock loading axis oriented along the [001] direction, the cellular structure is not formed after reaching the critical pressures σ c equal to 31 and 45 GPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Murr, Scr. Metall. 12, 201 (1978).

    Article  Google Scholar 

  2. M. A. Meyers, F. Gregory, B. K. Kad, M. S. Schneider, D. H. Kalantar, B. A. Remington, G. Ravichandran, T. Boehly, and J. S. Wark, Acta Mater. 51, 1211 (2003).

    Article  Google Scholar 

  3. M. S. Schneider, B. K. Kad, F. Gregory, D. H. Kalantar, B. A. Remington, and M. A. Meyers, Metall. Mater. Trans. A 35, 2633 (2004).

    Article  Google Scholar 

  4. M. A. Meyers, H. Jarmakani, E. M. Bringa, and B. A. Remington, Dislocations in Solids, Ed. by J. P. Hirth and L. Kubin (Elsevier, Amsterdam, The Netherlands, 2009), Vol. 15, Chap. 89, pp. 96–197.

  5. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, Phys. Rev. Lett. 107, 144302 (2011).

    Article  ADS  Google Scholar 

  6. M. A. Shehadeh, H. M. Zbib, and T. Diaz De La Rubia, Philos. Mag. 85, 1667 (2005).

    Article  ADS  Google Scholar 

  7. M. A. Shehadeh, E. M. Bringa, H. M. Zbib, J. M. McNaney, and B. A. Remington, Appl. Phys. Lett. 89, 171918 (2006).

    Article  ADS  Google Scholar 

  8. F. R. N. Nabarro, Z. S. Basinski, and D. B. Holt, The Plasticity of Pure Single Crystals (Adv. Phys. 13, 192 (1964); Metallurgiya, Moscow, 1967).

    Google Scholar 

  9. Z. P. Luo, H. W. Zhang, N. Hansen, and K. Lu, Acta Mater. 60, 1322 (2012).

    Article  Google Scholar 

  10. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55(4), 780 (2013).

    Article  ADS  Google Scholar 

  11. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55(11), 2280 (2013).

    Article  ADS  Google Scholar 

  12. C. S. Smith, Trans. AIME 212, 574 (1958).

    Google Scholar 

  13. M. A. Meyers, Scr. Metall. 12, 21 (1978).

    Article  Google Scholar 

  14. G. A. Malygin, Phys.-Usp. 42(9), 917 (1999).

    Article  ADS  Google Scholar 

  15. G. A. Malygin, Phys. Solid State 37(1), 1 (1995).

    ADS  Google Scholar 

  16. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55(4), 787 (2013).

    Article  ADS  Google Scholar 

  17. L. E. Murr, in Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York, 1981).

  18. G. A. Malygin, Phys. Solid State 48(4), 693 (2006).

    Article  ADS  Google Scholar 

  19. Y. Kawasaki, J. Phys. Soc. Jpn. 27, 142 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Original Russian Text © G.A. Malygin, S.L. Ogarkov, A.V. Andriyash, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 6, pp. 1123–1130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygin, G.A., Ogarkov, S.L. & Andriyash, A.V. Mechanism of formation of cellular dislocation structures during propagation of intense shock waves in crystals. Phys. Solid State 56, 1168–1176 (2014). https://doi.org/10.1134/S1063783414060237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414060237

Keywords

Navigation