Skip to main content
Log in

Valence transition 2+ → 3+ induced in ytterbium nanofilms by CO and O2 molecules chemisorbed on their surface

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Transformations of the surface and bulk of nanoscale ytterbium films during the surface interactions of these films with different ligand molecules have been studied. It has been shown that a combination of two factors, i.e., the existence of a lone electron pair in CO and O2 molecules and the unoccupied 5d level lying near the Fermi level in metallic divalent ytterbium, causes the formation of a stable chemisorption state of the molecule-nanofilm surface layer in which donor-acceptor bonds between gas molecules and surface metal ions are formed. As a result, ytterbium on the surface and in the bulk of the nanofilm is oxidized to a non-autonomous trivalent electronic state. The depth to which this transition propagates in the nanofilm has been determined; its anomalously large value (from 9 to 22 layers according to different estimates) has been explained. It has also been shown that the ligand molecule layer on the ytterbium surface is filled in two stages. The two-stage mechanism of this process is reflected by the nonmonotonic behavior of concentration dependences of the work function of CO-Yb and O2-Yb structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Shikin, Formation, Electronic Structure and Properties of Low-Dimensional Structures Based on Metals (VVM, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  2. G. Cao and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (World Scientific, Singapore, 2011), Vol. 2.

  3. J.-W. He, W. K. Kuhn, L.-W. Leung, and D. W. Goodman, J. Chem. Phys. Chem. 93, 7463 (1990).

    Article  ADS  Google Scholar 

  4. J.-W. He, C. A. Estrada, J. S. Corneille, and M.-Ch. Wu, Surf. Sci. 261, 164 (1992).

    Article  ADS  Google Scholar 

  5. M. Rauh, B. Heping, and P. Wissmann, Appl. Phys. A 61, 587 (1995).

    Article  ADS  Google Scholar 

  6. B. Hammer, Y. Morikawa, and J. K. Nørskov, Phys. Rev. Lett. 76, 2141 (1996).

    Article  ADS  Google Scholar 

  7. P. Jakob and A. Schlapka, Surf. Sci. 601, 1556 (2007).

    Article  Google Scholar 

  8. F. Voigts, F. Bebensee, S. Dahle, K. Volgmann, and W. Maus-Friedrichs, Surf. Sci. 603, 40 (2009).

    Article  ADS  Google Scholar 

  9. N. Schumacher, K. Andersson, L. C. Grabow, M. Mavrikakis, J. Nerlov, and I. Chorkendorff, Surf. Sci. 602, 702 (2008).

    Article  ADS  Google Scholar 

  10. F. Bebensee, F. Foigts, and W. Maus-Friedrichs, Surf. Sci. 602, 1622 (2008).

    Article  ADS  Google Scholar 

  11. K. A. Gschneidner, J. Less-Common Met. 17, 13 (1969).

    Article  Google Scholar 

  12. T. V. Krachino, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 39 (2), 224 (1997).

    Article  ADS  Google Scholar 

  13. E. Bertel, G. Strasser, F. P. Netzer, and J. A. D. Matthew, Surf. Sci. 118, 387 (1982).

    Article  ADS  Google Scholar 

  14. F. P. Netzer and J. A. D. Matthew, Rep. Prog. Phys. 49, 621 (1986).

    Article  ADS  Google Scholar 

  15. M. Sancrotti, A. Rizzi, and F. Marchetti, Phys. Rev. B: Condens. Matter 37, 3120 (1988).

    Article  ADS  Google Scholar 

  16. L. I. Johansson, J. W. Allen, I. Lindau, M. H. Hecht, and S. B. M. Hagstrom, Phys. Rev. B: Condens. Matter 21, 1408 (1980).

    Article  ADS  Google Scholar 

  17. J. Schmidt-May, F. Gerken, R. Nyholm, and L. C. Davis, Phys. Rev. B: Condens. Matter 30, 5560 (1984).

    Article  ADS  Google Scholar 

  18. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 52 (3), 625 (2010).

    Article  ADS  Google Scholar 

  19. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 54 (2), 404 (2012).

    Article  ADS  Google Scholar 

  20. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 54 (10), 2117 (2012).

    Article  ADS  Google Scholar 

  21. D. V. Buturovich, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Tech. Phys. 58 (6), 803 (2013).

    Article  Google Scholar 

  22. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 56 (7), 1449 (2014).

    Article  ADS  Google Scholar 

  23. R. F. Gerken, J. Barth, R. Kammerer, L. I. Johansson, and A. Flodstrom, Surf. Sci. 117, 468 (1982).

    Article  ADS  Google Scholar 

  24. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, Amsterdam, 1986; Mir, Moscow, 1989).

    Google Scholar 

  25. G. Blyholder, J. Phys. Chem. 68, 2772 (1964).

    Article  Google Scholar 

  26. J. Küpers, Surf. Sci. 36, 53 (1973).

    Article  Google Scholar 

  27. G. Doyen and G. F. Ertl, Surf. Sci. 43, 197 (1974).

    Article  ADS  Google Scholar 

  28. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 56 (12), 2548 (2014).

    Article  ADS  Google Scholar 

  29. S. Wieling, S. L. Molodtsov, Th. Gantz, J. J. Hinarjeos, and C. Laubschat, Phys. Rev. B: Condens. Matter 58, 13219 (1998).

    Article  ADS  Google Scholar 

  30. Y. Kubo, J. Phys. F: Met. Phys. 17, 383 (1987).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Buturovich, M.V. Kuz’min, M.V. Loginov, M.A. Mittsev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1822–1829.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buturovich, D.V., Kuz’min, M.V., Loginov, M.V. et al. Valence transition 2+ → 3+ induced in ytterbium nanofilms by CO and O2 molecules chemisorbed on their surface. Phys. Solid State 57, 1870–1877 (2015). https://doi.org/10.1134/S1063783415090061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090061

Keywords

Navigation