Skip to main content
Log in

Dynamics of polarized magnetoluminescence of localized excitons in mixed GaSe-GaTe crystals

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Polarization of radiation of triplet localized excitons induced by an external magnetic field in uniaxial GaSe-GaTe solid solutions (Voigt geometry) has been investigated using the time-resolved spectroscopy method. The linear radiation polarization occurring in a magnetic field is caused by a different behavior of radiation components polarized with EB and EB (π- and σ-components, respectively). Under steadystate conditions of excitation by unpolarized light, the π-component intensity increases in the field, whereas the σ-component intensity gradually decreases with increasing field. It has been shown that the dependences of the π- and σ-component intensities I π(B, t) and I σ(B, t) on the magnetic field significantly change for the lifetime t of excited states. The different decay rates of π- and σ-components lead to the strong time dependence of the linear polarization of exciton radiation induced by a magnetic field. The degree of linear radiation polarization at the exciton luminescence band maximum in fields B ≥ 0.4 T at long times t approaches unity. A theoretical description of the observed dependences I π(B, t) and I σ(B, t) has been proposed. The fine structure parameters and lifetimes of triplet excitons in different spin states have been determined by comparing the theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zh. I. Alferov, E. L. Portnoi, and A. A. Rogachev, Sov. Phys. Semicond. 2(8), 1001 (1968).

    Google Scholar 

  2. S. Lai and M. V. Klein, Phys. Rev. Lett. 44, 1087 (1980).

    Article  ADS  Google Scholar 

  3. M. Oueslati, C. Benoit a la Guillaume, and M. Zouaghi, Phys. Rev. B: Condens. Matter 37, 3037 (1988).

    Article  ADS  Google Scholar 

  4. D. Ouadjaout and Y. Marfaing, Phys. Rev. B: Condens. Matter 41, 12096 (1990).

    Article  ADS  Google Scholar 

  5. S. Permogorov and A. Reznitsky, J. Lumin. 52, 201 (1992).

    Article  Google Scholar 

  6. R. Westphaling, T. Breitkopf, S. Bauer, and C. Klingshirn, J. Lumin. 72–74, 980 (1997).

    Article  Google Scholar 

  7. P. P. Feofilov, The Physical Basic of Polarized Emission (GIFML, Moscow, 1959; Consultants Bureau, New York, 1961).

    Google Scholar 

  8. Excitons, Ed. by E. I. Rashba and M. D. Sturge (North-Holland, Amsterdam, 1982).

    Google Scholar 

  9. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Springer-Verlag, Berlin, 1995).

    Book  Google Scholar 

  10. A. N. Starukhin, D. K. Nel’son, B. S. Razbirin, and E. L. Ivchenko, Phys. Rev. B: Condens. Matter 72, 045206 (2005).

    Article  ADS  Google Scholar 

  11. A. G. Abdukadyrov, S. D. Baranovskii, S. Yu. Verbin, E. L. Ivchenko, A. Yu. Naumov, and A. N. Reznitskii, Sov. Phys. JETP 71(6), 1155 (1990).

    Google Scholar 

  12. A. N. Starukhin, B. S. Razbirin, A. V. Chugreev, M. Khapp, and F. Khenneberger, Phys. Solid State 41(8), 1271 (1999).

    Article  ADS  Google Scholar 

  13. E. Mooser and M. Schlüter, Nuovo Cimento Soc. Ital. Fis., B 18, 164 (1973).

    Google Scholar 

  14. E. L. Ivchenko, G. E. Pikus, B. S. Razbirin, and A. N. Starukhin, Sov. Phys. JETP 45(6), 1172 (1977).

    ADS  Google Scholar 

  15. E. M. Gamarts, E. L. Ivchenko, G. E. Pikus, B. S. Razbirin, and A. N. Starukhin, Sov. Phys. Solid State 22(12), 2119 (1980).

    Google Scholar 

  16. W. M. Chen, M. Godlewski, B. Monemar, and J. P. Bergman, Phys. Rev. B: Condens. Matter 41, 5746 (1990).

    Article  ADS  Google Scholar 

  17. M. Wagner, I. A. Buyanova, N. Q. Thinh, W. M. Chen, B. Monemar, J. L. Lindstrom, H. Amano, and I. Akasaki, Phys. Rev. B: Condens. Matter 62, 16572, (2000).

    Article  ADS  Google Scholar 

  18. A. N. Starukhin, D. K. Nelson, and B. S. Razbirin, Phys. Rev. B: Condens. Matter 65, 193204 (2002).

    Article  ADS  Google Scholar 

  19. A. M. Frens, M. T. Bennebroek, J. Schmidt, W. M. Chen, and B. Monemar, Phys. Rev. B: Condens. Matter 46, 12316 (1992).

    Article  ADS  Google Scholar 

  20. E. Sorman, W. M. Chen, A. Henry, S. Andersson, E. Janzen, and B. Monemar, Phys. Rev. B: Condens. Matter 51, 2132 (1995).

    Article  ADS  Google Scholar 

  21. W. M. Chen and B. Monemar, Phys. Rev. B: Condens. Matter 38, 12660 (1988).

    Article  ADS  Google Scholar 

  22. S. Shevel, R. Fischer, E. O. Gobel, G. Noll, and P. Thomas, J. Lumin. 37, 45 (1987).

    Article  Google Scholar 

  23. G. Gourdon and P. Lavallard, Phys. Status. Solidi B 153, 641 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Starukhin.

Additional information

Original Russian Text © A.N. Starukhin, D.K. Nelson, B.S. Razbirin, D.L. Fedorov, D.K. Syunyaev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 7, pp. 1294–1300.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starukhin, A.N., Nelson, D.K., Razbirin, B.S. et al. Dynamics of polarized magnetoluminescence of localized excitons in mixed GaSe-GaTe crystals. Phys. Solid State 57, 1318–1324 (2015). https://doi.org/10.1134/S1063783415070306

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415070306

Keywords

Navigation