Skip to main content
Log in

Formation of the conduction band electronic structure during deposition of ultrathin dicarboximide-substituted perylene films on the oxidized silicon surface

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the investigation of the conduction band electronic structure and the interfacial potential barrier during deposition of ultrathin dicarboximide-substituted perylene films (PTCBI-C8) on the oxidized silicon surface have been presented. The measurements have been performed using the very low energy electron diffraction (VLEED) technique implemented in the total current spectroscopy (TCS) mode with a variation in the incident electron energy from 0 to 25 eV. Changes in the intensities of the maxima from the deposited PTCBI-C8 film and from the substrate with an increase in the organic coating thickness to 7 nm have been analyzed using TCS measurements. A comparison of the structure of the maxima of PTCBI-C8 and perylene-tetracarboxylic-dianhydride (PTCDA) films has made it possible to distinguish the energy range (8–13 eV above E F) in which distinct differences in the structures of maxima for PTCDA and PTCBI-C8 films are observed. This energy range corresponds to low-lying σ*-states of the conduction band of the films studied. The formation of the interfacial region of the PTCBI-C8 film and (SiO2)n-Si substrate is accompanied by an increase in the surface work function by 0.6 eV, which corresponds to the electron density charge transfer from the (SiO2)n-Si substrate to the PTCBI-C8 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Min, H. Zhang, T. Stubhan, Y. N. Luponosov, M. Kraft, S. A. Ponomarenko, T. Ameri, U. Scherf, and C. J. Brabec, J. Mater. Chem. A 1(37), 11306 (2013).

    Article  Google Scholar 

  2. A. N. Aleshin, I. P. Shcherbakov, and I. N. Trapeznikova, Phys. Solid State 56(2), 405 (2014).

    Article  ADS  Google Scholar 

  3. A. Y. Sosorev, O. D. Parashchuk, S. A. Zapunidi, G. S. Kashtanov, and D. Y. Paraschuk, J. Phys. Chem. C 117(14), 6972 (2013).

    Article  Google Scholar 

  4. F. Meng, X. Yan, Y. Zhu, and P. Si, Nanoscale Res. Lett. 8, 179 (2013).

    Article  ADS  Google Scholar 

  5. F. Babudri, G. M. Farinola, F. Naso, and R. Ragni, Chem. Commun. (Cambridge) 10, 1003 (2007).

    Article  Google Scholar 

  6. J. L. Brédas and A. J. Heeger, Chem. Phys. Lett. 217, 507 (1994).

    Article  ADS  Google Scholar 

  7. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000).

    Article  Google Scholar 

  8. N. Hiroshiba, R. Hayakawa, and T. Chikyow, Phys. Chem. Chem. Phys. 13, 6280 (2011).

    Article  Google Scholar 

  9. F. Wurthner, C. Thalacker, S. Diele, and C. Thalacker, Chem.-Eur. J. 7(10), 2245 (2001).

    Article  Google Scholar 

  10. J. Taborski, P. Vaterlein, U. Zimmermann, and E. Umbach, J. Electron. Spectrosc. Relat. Phenom. 75, 129 (1995).

    Article  Google Scholar 

  11. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, and A. S. Komolov, Tech. Phys. 56(6), 754 (2011).

    Article  Google Scholar 

  12. A. S. Komolov, S. A. Komolov, E. F. Lazneva, A. A. Gavrikov, and A. M. Turiev, Surf. Sci. 605, 1449 (2011).

    Article  ADS  Google Scholar 

  13. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117(24), 12633 (2013).

    Article  Google Scholar 

  14. A. S. Komolov and P. J. Moller, Synth. Met. 128, 205 (2002).

    Article  Google Scholar 

  15. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  16. S. Heutz, A. J. Ferguson, G. Rumbles, and T. S. Jones, Org. Electron. 3, 119 (2002).

    Article  Google Scholar 

  17. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  18. S. A. Pshenichnyuk and A. S. Komolov, J. Phys. Chem. A 116(1), 761 (2012).

    Article  Google Scholar 

  19. A. S. Komolov, E. F. Lazneva, Y. G. Aliaev, S. A. Akhremchik, F. S. Kamounah, J. Mortenson, and K. Schaumburg, J. Mol. Struct. 744/747, 145 (2005).

    Article  ADS  Google Scholar 

  20. Y. Hirose, C. I. Wu, V. Aristov, P. Soukiassian, and A. Kahn, Appl. Surf. Sci. 113/114, 291 (1997).

    Article  ADS  Google Scholar 

  21. I. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).

    Article  ADS  Google Scholar 

  22. A. S. Komolov, E. F. Lazneva, C. A. Pshenichnyuk, A. A. Gavrikov, N. S. Chepilko, A. A. Tomilov, N. B. Gerasimova, A. A. Lezov, and P. S. Repin, Semiconductors 47(7), 956 (2013).

    Article  ADS  Google Scholar 

  23. A. P. Hitchcock, P. Fischer, A. Gedanken, and M. B. Robin, J. Phys. Chem. 91, 531 (1987).

    Article  Google Scholar 

  24. J. Ren, Sh. Meng, Y.-L. Wang, X.-C. Ma, Q.-K. Xue, and E. Kaxiras, J. Chem. Phys. 134, 194706 (2011).

    Article  ADS  Google Scholar 

  25. S. A. Komolov, E. F. Lazneva, and A. S. Komolov, Tech. Phys. Lett. 29(12), 974 (2003).

    Article  ADS  Google Scholar 

  26. T. Graber, F. Forster, A. Schoell, and F. Reinert, Surf. Sci. 605, 878 (2011).

    Article  ADS  Google Scholar 

  27. L. Grzadziel, M. Krzywiecki, H Peisert, T. Chassé, and J. Szuber, Org. Electron. 13(10), 1873 (2012).

    Article  Google Scholar 

  28. A. S. Komolov and P. J. Moller, Appl. Surf. Sci. 244, 573 (2005).

    Article  ADS  Google Scholar 

  29. L. Yan and Y. Gao, Thin Solid Films 417, 101 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, A.V. Baramygin, A.D. Ovsyannikov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 7, pp. 1445–1449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Formation of the conduction band electronic structure during deposition of ultrathin dicarboximide-substituted perylene films on the oxidized silicon surface. Phys. Solid State 57, 1472–1476 (2015). https://doi.org/10.1134/S1063783415070173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415070173

Keywords

Navigation