Skip to main content
Log in

Electronic structure of the conduction band of the interface region of ultrathin films of substituted perylenedicarboximides and the germanium oxide surface

  • Polymers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the investigation of the electronic structure of the conduction band and the interfacial potential barrier during the formation of interfaces of dioctyl-substituted perylenedicarboximide (PTCDI-C8) and diphenyl-substituted perylenedicarboximide (PTCDI-Ph) ultrathin films with the oxidized germanium surface have been presented. The experimental results have been obtained using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode at energies in the range from 5 to 20 eV above the Fermi level E F. The positions of the maxima of the fine structure of total current spectra (FSTCS) of the PTCDI-C8 and PTCDI-Ph films differ significantly in the energy range from 9 to 20 eV above the Fermi level E F, which can be associated with the difference between the substituents of the chosen molecules, dioctyl- and diphenyl-, respectively. At the same time, the positions of the lowenergy maxima in the FSTCS spectra at an energy 6–7 eV above the Fermi level E F for the PTCDI-C8 and PTCDI-Ph films almost coincide with each other. It has been suggested that these maxima are attributed to the electronic states of the perylene core of the molecules under investigation. The process of the formation of interfacial potential barriers of the PTCDI-C8 and PTCDI-Ph films with the oxidized germanium surface has been analyzed. It has been found that the work functions of the surface, E vacE F, differ little from 4.6 ± 0.1 eV over the entire range of organic coating thicknesses from 0 to 6 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gruenewald, L. K. Schirra, P. Winget, M. Kozlik, P. F. Ndione, A. K. Sigdel, J. J. Berry, R. Forker, J.-L. Brédas, T. Fritz, and O. L. A. Monti, J. Phys. Chem. C 119, 4865 (2015).

    Article  Google Scholar 

  2. A. V. Mumyatov, L. I. Leshanskaya, D. V. Anokhin, N. N. Dremova, and P. A. Troshin, Mendeleev Commun. 24, 306 (2014).

    Article  Google Scholar 

  3. L.-N. Nguyen, S. K. Pradhan, C.-N. Yen, M.-C. Lin, C.-H. Chen, C. S. Wu, K.-S. Chang-Liao, M.-T. Lin, and C.-D. Chen, Appl. Phys. Lett. 103, 183301 (2013).

    Article  ADS  Google Scholar 

  4. I. A. Averin, A. A. Karmanov, V. A. Moshnikov, I. A. Pronin, S. E. Igoshina, A. P. Sigaev, and E. I. Terukov, Phys. Solid State 57 (12), 2373 (2015).

    Article  ADS  Google Scholar 

  5. A. A. Ahmad Zebari, M. Kolmer, and J. S. Prauzner-Bechcicki, Appl. Surf. Sci. 332, 403 (2015).

    Article  ADS  Google Scholar 

  6. A. S. Komolov, Tech. Phys. 49 (5), 630 (2004).

    Article  Google Scholar 

  7. P. A. Troshin, D. K. Susarova, E. A. Khakina, A.A.Goryachev, O. V. Borshchev, S. A. Ponomarenko, V. F. Razumov, and N. Serdar Sariciftci, J. Mater. Chem. 22, 18433 (2012).

    Article  Google Scholar 

  8. J.-L. Brédas and A. J. Heeger, Chem. Phys. Lett. 217, 507 (1994).

    Article  ADS  Google Scholar 

  9. N. Hiroshiba, R. Hayakawa, and T. Chikyow, Phys. Chem. Chem. Phys. 13, 6280 (2011).

    Article  Google Scholar 

  10. F. Wurthner, C. Thalacker, S. Diele, and C. Thalacker, Chem. Eur. J. 7 (10), 2245 (2001).

    Article  Google Scholar 

  11. J. Taborski, P. Vaterlein, U. Zimmermann, and E. Umbach, J. Electron Spectrosc. Relat. Phenom. 75, 129 (1995).

    Article  Google Scholar 

  12. A. S. Komolov, P. J. Møller, J. Mortensen, S. A. Komolov, and E. F. Lazneva, Appl. Surf. Sci. 253, 7376 (2007).

    Article  ADS  Google Scholar 

  13. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, and A. D. Ovsyannikov, Phys. Solid State 57 (7), 1472 (2015).

    Article  ADS  Google Scholar 

  14. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58 (2), 377 (2016).

    Article  ADS  Google Scholar 

  15. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117 (24), 12633 (2013).

  16. D. Bodlaki, H. Yamamoto, D. H. Waldeck, and E. Borguet, Surf. Sci. 543, 63 (2003).

    Article  ADS  Google Scholar 

  17. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. Bomben, Handbook of X-ray Photoelectron Spectroscope, Ed. by J. Chastain, 2nd ed. (Perkin-Elmer, Eden Prairie, Minnesota, United States, 1992).

  18. S. Heutz, A. J. Ferguson, G. Rumbles, and T. S. Jones, Org. Electron. 3, 119 (2002).

    Article  Google Scholar 

  19. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, App. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  20. S. A. Pshenichnyuk, A. V. Kukhto, I. N. Kukhto, and A. S. Komolov, Tech. Phys. 56 (6), 754 (2011).

    Article  Google Scholar 

  21. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  22. S. A. Pshenichnyuk and A. S. Komolov, J. Phys. Chem. A 116 (1), 761 (2012).

    Article  Google Scholar 

  23. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1, 5 (2000)

    Article  Google Scholar 

  24. A. S. Komolov, P. J. Møller, Y. G. Aliaev, S. N. Akhremtchik, and K. Schaumburg, J. Mol. Struct. 744–747, 145 (2005).

    Article  Google Scholar 

  25. L. Grzadziel, M. Krzywiecki, H. Peisert, T. Chassé, and J. Szuber, Org. Electron. 13 (10), 1873 (2012).

    Article  Google Scholar 

  26. S. Braun, W. Salaneck, and M. Fahlman, Adv. Mater. (Weinheim) 21, 1450 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, E.F. Lazneva, N.B. Gerasimova, Yu.A. Panina, A.V. Baramygin, S.A. Pshenichnyuk, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1836–1840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Electronic structure of the conduction band of the interface region of ultrathin films of substituted perylenedicarboximides and the germanium oxide surface. Phys. Solid State 58, 1901–1905 (2016). https://doi.org/10.1134/S1063783416090183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090183

Navigation