Skip to main content
Log in

Structural α-γ transition in iron within the GGA + DMFT method taking into account the rotational invariance of the Coulomb interaction

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural α-γ transition in iron has been studied in the framework of the GGA + DMFT method using the generalized gradient approximation (GGA) and the dynamical mean field theory (DMFT). The impurity problem in the DMFT has been solved using the recently proposed method based on the Hirsch-Fye algorithm and approximately taking into account the rotational invariance of the Coulomb interaction. It has been shown that a decrease in the calculated Curie-Weiss temperature is accompanied by a decrease in the calculated α-γ transition temperature if one takes into account the rotational invariance of the Coulomb interaction. Moreover, the agreement between the calculated α-γ transition temperature and its experimental value is improved. The results obtained agree with the earlier proposed explanation of the mechanism of this transition, according to which its main driving force is the magnetic correlation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kohn and L. J. Sham, Phys. Rev. 145, 561 (1966).

    Article  ADS  Google Scholar 

  2. D. J. Singh, W. E. Pickett, and H. Krakauer, Phys. Rev. B: Condens. Matter 43, 11628 (1991).

    Article  ADS  Google Scholar 

  3. L. Stixrude, R. E. Cohen, and D. J. Singh, Phys. Rev. B: Condens. Matter 50, 6442 (1994).

    Article  ADS  Google Scholar 

  4. E. G. Moroni, G. Kresse, J. Hafner, and J. Furthmuller, Phys. Rev. B: Condens. Matter 56, 15629 (1997).

    Article  ADS  Google Scholar 

  5. V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).

    ADS  Google Scholar 

  6. V. Anisimov and Yu. Izyumov, Electronic Structure of Strongly Correlated Materials (Springer-Verlag, Berlin, 2010).

    Book  Google Scholar 

  7. A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001).

    Article  ADS  Google Scholar 

  8. M. Katsnelson and A. Lichtenstein, J. Phys.: Condens. Matter 11, 1037 (1999).

    ADS  Google Scholar 

  9. I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 106, 106405 (2011).

    Article  ADS  Google Scholar 

  10. I. Leonov, A. I. Poteryaev, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B: Condens. Matter 85, 020401(R) (2012).

    Article  ADS  Google Scholar 

  11. I. Leonov, A. I. Poteryaev, Yu. N. Gornostyrev, A. I. Lichtenstein, M. I. Katsnelson, V. I. Anisimov, and D. Vollhardt, Sci. Rep. 4, 5585 (2014).

    Article  ADS  Google Scholar 

  12. A. A. Katanin, A. I. Poteryaev, A. V. Efremov, A. O. Shorikov, S. L. Skornyakov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 81, 045117 (2010).

    Article  ADS  Google Scholar 

  13. V. I. Anisimov, A. S. Belozerov, A. I. Poteryaev, and I. Leonov, Phys. Rev. B: Condens. Matter 86, 035152 (2012).

    Article  ADS  Google Scholar 

  14. A. S. Belozerov, I. Leonov, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 87, 125138 (2013).

    Article  ADS  Google Scholar 

  15. A. S. Belozerov and V. I. Anisimov, J. Phys.: Condens. Matter 26, 375601 (2014).

    Google Scholar 

  16. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B: Condens. Matter 72, 035122 (2005).

    Article  ADS  Google Scholar 

  18. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395 (2008).

    Article  ADS  Google Scholar 

  19. M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).

    Article  ADS  Google Scholar 

  20. J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).

    Article  ADS  Google Scholar 

  21. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  22. A. K. McMahan, K. Held, and R. T. Scalettar, Phys. Rev. B: Condens. Matter 67, 075108 (2003).

    Article  ADS  Google Scholar 

  23. http://elk.sourceforge.net/.

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  25. Z. S. Basinski, W. Hume-Rothery, and A. L. Sutton, Proc. R. Soc. London, Ser. A 229, 459 (1955).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Belozerov.

Additional information

Original Russian Text © A.S. Belozerov, V.I. Anisimov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 7, pp. 1255–1259.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belozerov, A.S., Anisimov, V.I. Structural α-γ transition in iron within the GGA + DMFT method taking into account the rotational invariance of the Coulomb interaction. Phys. Solid State 57, 1277–1281 (2015). https://doi.org/10.1134/S1063783415070069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415070069

Keywords

Navigation