Skip to main content
Log in

First principle calculations of iron and iron-boron transition levels in Si1−x Ge x alloy

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper investigates, using first principle calculations, the charge transition levels Fe0/+ and FeB0/+, and the FeB binding energy in Si1−x Ge x alloy with composition x = 3 − 25%. The alloys were generated using an efficient code for the stochastic generation of special quasirandom structures. We found that the separation between Fe0/+ and FeB0/+ donor levels was ~0.24 eV (experimental value =0.28 eV) and was independent on x, in an agreement with the experiment. The pattern of the variation of the levels and band gap energies with x agreed very well with the experiment especially for x< 25 %. The formation of FeB-pairs was found to be favorable over individual Fe formation with average binding energy ~0.2 eV, agreeing with the first-principle calculation report using finite supercell size. In particular, the reliability of our method to reproduce the experimental results associated with the composition controlled FeB donor levels has successfully been demonstrated in the industrially interesting SiGe alloy material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mesli, B. Vileno, C. Eckert, A. Slaoui, C. Pedersen, A.N. Larsen, N. Abrosimov, Phys. Rev. B 66, 045206 (2002)

    Article  ADS  Google Scholar 

  2. M. Sanati, N.G. Szwacki, S. Estreicher, Phys. Rev. B 76, 125204 (2007)

    Article  ADS  Google Scholar 

  3. K. Wünstel, P. Wagner, Appl. Phys. A 27, 207 (1982)

    Article  ADS  Google Scholar 

  4. A. Carvalho, J. Coutinho, R. Jones, J. Goss, M. Barroso, P. Briddon, Phys. Rev. B 78, 125208 (2008)

    Article  ADS  Google Scholar 

  5. A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, Calphad 42, 13 (2013)

    Article  Google Scholar 

  6. A. Van de Walle, M. Asta, G. Ceder, Calphad 26, 539 (2002)

    Article  Google Scholar 

  7. A. Istratov, H. Hieslmair, E. Weber, Appl. Phys. A 69, 13 (1999)

    Article  ADS  Google Scholar 

  8. J. Van Kooten, G. Weller, C. Ammerlaan, Phys. Rev. B 30, 4564 (1984)

    Article  ADS  Google Scholar 

  9. M. Höhne, U. Juda, J. Wollweber, D. Schulz, J. Donecker, A. Gerhardt, Mater. Sci. Forum (Trans. Tech. Publ., 1995), pp. 359–364

  10. T. Kamins, Phys. B: Condens. Matter 273, 603 (1999)

    ADS  Google Scholar 

  11. J. Goss, M. Shaw, P. Briddon, Top. Appl. Phys. 104, 69 (2007)

    Google Scholar 

  12. R.G. Parr, Density Functional Theory of Atoms and Molecules (Springer, 1980)

  13. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014)

    Article  ADS  Google Scholar 

  14. J. Weber, M. Alonso, Phys. Rev. B 40, 5683 (1989)

    Article  ADS  Google Scholar 

  15. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)

    Article  ADS  Google Scholar 

  16. F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  ADS  Google Scholar 

  17. W. Martienssen, H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer Science & Business Media, 2006)

  18. P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79, 085104 (2009)

    Article  ADS  Google Scholar 

  19. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. G. Bachelet, D. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982)

    Article  ADS  Google Scholar 

  22. P. Schwerdtfeger, Chem. Phys. Chem. 12, 3143 (2011)

    Article  Google Scholar 

  23. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.E. Northrup, S. Zhang, Phys. Rev. B 47, 6791 (1993)

    Article  ADS  Google Scholar 

  26. G. Makov, M. Payne, Phys. Rev. B 51, 4014 (1995)

    Article  ADS  Google Scholar 

  27. S. Lany, A. Zunger, Phys. Rev. B 78, 235104 (2008)

    Article  ADS  Google Scholar 

  28. A. Seidl, A. Görling, P. Vogl, J. Majewski, M. Levy, Phys. Rev. B 53, 3764 (1996)

    Article  ADS  Google Scholar 

  29. H. Conzelmann, K. Graff, E. Weber, Appl. Phys. A 30, 169 (1983)

    Article  ADS  Google Scholar 

  30. A. Chantre, D. Bois, Phys. Rev. B 31, 7979 (1985)

    Article  ADS  Google Scholar 

  31. H. Conzelmann, Appl. Phys. A 42, 1 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Alshaikh Hamid Khalafalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalafalla, M.A.H., Mesli, A. First principle calculations of iron and iron-boron transition levels in Si1−x Ge x alloy. Eur. Phys. J. B 90, 103 (2017). https://doi.org/10.1140/epjb/e2017-70724-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70724-5

Keywords

Navigation