Skip to main content
Log in

A dislocation kinetic model of the dislocation structure formation in a nanocrystalline material under intense shock wave propagation

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A dislocation kinetic model of the formation and propagation of plastic shock waves in nanocrystalline materials (with a grain size of 1–100 nm) at pressures ranging from 1 to 50 GPa has been discussed theoretically. The model is based on a nonlinear equation of the reaction-diffusion type for the dislocation density, which includes the processes of multiplication, annihilation, and diffusion of dislocations with a strong absorption of the dislocations by nanograin boundaries. The solution of this equation is obtained in the form of a traveling dislocation density wave propagating with a constant velocity. The dependences of the dislocation density and dislocation front width on the nanograin size and pressure in the wave are determined. A comparison of the obtained dependences with the available results of the experiments and molecular dynamics simulations of shock-deformed nanocrystalline materials demonstrates their good quantitative agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  2. G. A. Malygin, Phys. Solid State 49 (6), 1013 (2007).

    Article  ADS  Google Scholar 

  3. R. A. Andrievski and A. M. Glezer, Phys.-Usp. 52 (4), 315 (2009).

    Article  ADS  Google Scholar 

  4. M. A. Meyers, H. Jarmakani, E. M. Bringa, and B. A. Remington, in Dislocations in Solids, Ed. by J. P. Hirth, and L. Kubin (North-Holland, Amsterdam, 2009), Vol. 15, Chap. 89, 96.

  5. E. M. Bringa, A. Caro, M. Victoria, and N. Park, J. Met. 57, 67 (2005).

    Google Scholar 

  6. E. M. Bringa, A. Caro, Y. M. Wang, J. M. McNaney, B. A. Remington, R. F. Smith, B. Torralva, and H. Van Swygenhoven, Science (Washington) 309, 1838 (2005).

    Article  ADS  Google Scholar 

  7. E. M. Bringa, K. Rosolankova, R. E. Rudd, B. A. Remington, J. S. Wark, M. Duchaineau, D. H. Kalantar, J. Hawreliak, and J. Belak, Nat. Mater. 5, 805 (2006).

    Article  ADS  Google Scholar 

  8. Y. M. Wang, E. M. Bringa, J. M. McNaney, M. Victoria, A. M. Hodge, R. F. Smith, B. Torralva, B. A. Remington, C. A. Schuh, H. Jarmakani, and M. A. Meyers, Appl. Phys. Lett. 88, 061917 (2006).

    Article  ADS  Google Scholar 

  9. N. Gunkelmann, D. R. Tramontina, B. A. Remington, and H. M. Urbassek, New J. Phys. 16, 093032 (2014).

    Article  ADS  Google Scholar 

  10. H. Jarmakani, E. M. Bringa, P. Erhart, B. A. Remington, Y. M. Wang, N. Q. Vo, and M. A. Meyers, Acta Mater. 56, 5584 (2008).

    Article  Google Scholar 

  11. H. Van Swygenhoven, M. Spacer, A. Caro, and D. Farkas, Phys. Rev. B: Condens. Matter 60, 22 (1999).

    Article  ADS  Google Scholar 

  12. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 56 (11), 2239 (2014).

    Article  ADS  Google Scholar 

  13. A. D. Polyanin and V. F. Zaitsev, Handbook on Nonlinear Equations of Mathematical Physics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  14. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55 (4), 780 (2013).

    Article  ADS  Google Scholar 

  15. G. A. Malygin, Phys. Solid State 37 (8), 1248 (1995).

    ADS  Google Scholar 

  16. D. Wolf, V. Yamakov, S. R. Phillpot, A. Mukhergee, and H. Gleiter, Acta Mater. 53, 1 (2005).

    Article  Google Scholar 

  17. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 56 (6), 1168 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Original Russian Text © G.A. Malygin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 5, pp. 955–960.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygin, G.A. A dislocation kinetic model of the dislocation structure formation in a nanocrystalline material under intense shock wave propagation. Phys. Solid State 57, 967–973 (2015). https://doi.org/10.1134/S1063783415050212

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415050212

Keywords

Navigation