Skip to main content
Log in

Dynamics of the Stone-Wales defect in graphene

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The dynamics of a Stone-Wales defect in graphene has been investigated using the computer simulation of its time evolution at different temperatures. The previously predicted thermally activated transitions between two energy-degenerate sinelike configurations of these defects have been directly demonstrated. The temperature dependence of the characteristic time of these transitions has been determined. Based on the analysis of the hypersurface of the potential energy, the activation energy and frequency factor in the Arrhenius law have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  3. A. I. Podlivaev and L. A. Openov, JETP Lett. 81(10), 533 (2005).

    Article  ADS  Google Scholar 

  4. L. A. Openov and A. I. Podlivaev, JETP Lett. 84(2), 68 (2006).

    Article  ADS  Google Scholar 

  5. Yu. E. Lozovik and A. M. Popov, Phys.—Usp. 40(7), 717 (1997).

    Article  ADS  Google Scholar 

  6. L. Chen, H. Hu, Yu. Quyang, H. Z. Pan, Y. Y. Sun, and F. Liu, Carbon 49, 3356 (2011).

    Article  Google Scholar 

  7. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London) 446, 60 (2007).

    Article  ADS  Google Scholar 

  8. E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 61, 2693 (1988).

    Article  ADS  Google Scholar 

  9. H. Amara, S. Latil, V. Meunier, Ph. Lambin, and J.-C. Charlier, Phys. Rev. B: Condens. Matter 76, 115423 (2007).

    Article  ADS  Google Scholar 

  10. J. Ma, D. Alfè, A. Michaelides, and E. Wang, Phys. Rev. B: Condens. Matter 80, 033407 (2009).

    Article  ADS  Google Scholar 

  11. J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008).

    Article  ADS  Google Scholar 

  12. L. A. Openov and A. I. Podlivaev, Phys. Solid State 50(6), 1195 (2008).

    Article  ADS  Google Scholar 

  13. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Lett. A 373, 1653 (2009).

    Article  ADS  Google Scholar 

  14. M. M. Maslov, A. I. Podlivaev, and L. A. Openov, Phys. Solid State 53(12), 2532 (2011).

    Article  ADS  Google Scholar 

  15. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    Article  ADS  Google Scholar 

  16. V. F. Elesin, A. I. Podlivaev, and L. A. Openov, Phys. Low-Dimens. Struct. 11/12, 91 (2000).

    Google Scholar 

  17. A. I. Podlivaev and L. A. Openov, Phys. Solid State 48(11), 2226 (2006).

    Article  ADS  Google Scholar 

  18. L. Li, S. Reich and J. Robertson, Phys. Rev. B: Condens. Matter 72, 184109 (2005).

    Article  ADS  Google Scholar 

  19. G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    Article  ADS  Google Scholar 

  20. A. I. Podlivaev and L. A. Openov, Phys. Solid State 55(12), 2592 (2013).

    Article  ADS  Google Scholar 

  21. M. M. Maslov, L. A. Openov, and A. I. Podlivaev, Phys. Solid State 56(6), 1239 (2014).

    Article  ADS  Google Scholar 

  22. A. A. El-Barbary, R. H. Telling, C. P. Ewels, M. I. Heggie, and P. R. Briddon, Phys. Rev. B: Condens. Matter 68, 144107 (2003).

    Article  ADS  Google Scholar 

  23. A. W. Robertson, B. Montanari, K. He, C. S. Allen, Y. A. Wu, N. M. Harrison, A. I. Kirkland, and J. H. Warner, ACS Nano 7, 4495 (2013).

    Article  Google Scholar 

  24. L. Chen, J. Li, D. Li, M. Wei, and X. Wang, Solid State Commun. 152, 1985 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Openov.

Additional information

Original Russian Text © A.I. Podlivaev, L.A. Openov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 4, pp. 802–806.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Openov, L.A. Dynamics of the Stone-Wales defect in graphene. Phys. Solid State 57, 820–824 (2015). https://doi.org/10.1134/S1063783415040265

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415040265

Keywords

Navigation