Skip to main content
Log in

Pore- and delamination-induced mismatch strain relaxation and conditions for the formation of dislocations, cracks, and buckles in the epitaxial AlN(0001)/SiC/Si(111) heterostructure

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A method has been proposed using the example of an AlN/SiC/Si heterostructure according to which the strain state induced in multilayer epitaxial films by the mismatch in the lattice parameters and thermal expansion coefficients of the crystals can be calculated from the experimental temperature dependence of the curvature of the crystal plate. The method makes it possible to estimate the imperfection of the hetero-structure from defect-relieved mechanical stresses caused by mismatch strains. It has been found that there are specific features in the formation of the relief of AlN films grown on SiC/Si substrates prepared by the atomic substitution. Criteria for the formation and preferred orientations of defects (dislocations, cracks, delaminations, and buckles) in AlN films have been calculated. For this purpose, the surface energies and energies of adhesion for different twins at the semiconductor interfaces have been calculated using computational quantum chemistry methods for different crystal faces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morkoç, Handbook of Nitride Semiconductors and Devices (Wiley, Weinheim, 2008), Vols. 1–3.

    Book  Google Scholar 

  2. S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin, and K. A. Tcarik, Rev. Adv. Mater. Sci. 17(1–2), 1 (2008).

    Google Scholar 

  3. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 50(7), 1238 (2008).

    Article  ADS  Google Scholar 

  4. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56(8), 1507 (2014).

    Article  ADS  Google Scholar 

  5. S. A. Kukushkin and A. V. Osipov, J. Phys. D: Appl. Phys. 47, 313001 (2014).

    Article  ADS  Google Scholar 

  6. V. N. Bessolov, Yu. V. Zhilyaev, E. V. Konenkova, L. M. Sorokin, N. A. Feoktistov, Sh. Sharofidinov, M. P. Shcheglov, S. A. Kukushkin, L. I. Mets, and A. V. Osipov, Tech. Phys. Lett. 36(6), 496 (2010).

    Article  ADS  Google Scholar 

  7. L. M. Sorokin, A. E. Kalmykov, V. N. Bessolov, N. A. Feoktistov, A. V. Osipov, S. A. Kukushkin, and V. N. Veselov, Tech. Phys. Lett. 37(4), 326 (2011).

    Article  ADS  Google Scholar 

  8. Ya. E. Geguzin, Diffusion Zone (Nauka, Moscow, 1979), p. 286 [in Russian].

    Google Scholar 

  9. W. M. Yim and R. J. Paff, J. App. Phys. 45, 1456 (1974).

    Article  ADS  Google Scholar 

  10. Z. Li and R. C. Bradt, J. Mater. Sci. 21, 4366 (1986).

    Article  ADS  Google Scholar 

  11. S. Figge, H. Kroncke, D. Hommel, and B. M. Epelbaum, Appl. Phys. Lett. 94, 101915 (2009).

    Article  ADS  Google Scholar 

  12. C. Roder, S. Einfeldt, S. Figge, and D. Hommel, Phys. Rev. B: Condens. Matter 72, 085221 (2005).

    Article  ADS  Google Scholar 

  13. L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  14. H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).

    Article  ADS  Google Scholar 

  15. G. F. Dirras, P. Djemia, Y. Roussigné, and K. M. Jackson, Mater. Sci. Eng., A 387–389, 302 (2004).

    Article  Google Scholar 

  16. K. Kamitani, M. Grimsditch, J. C. Nipko, C.-K. Loong, M. Okada, and I. Kimura, J. App. Phys. 82(6), 3152 (1997).

    Article  ADS  Google Scholar 

  17. C. Deger, E. Born, H. Angerer, O. Ambacher, and M. Stutzmann, Appl. Phys. Lett. 72, 2400 (1998).

    Article  ADS  Google Scholar 

  18. A. F. Wright, J. Appl. Phys. 82(6), 2833 (1997).

    Article  ADS  Google Scholar 

  19. Z. Li and R. C. Bradt, J. Mater. Sci. 22, 2557 (1987).

    Article  ADS  Google Scholar 

  20. R. R. Reeber and K. Wang, MRS Internet J. Nitride Semicond. Res. 6(3), 1 (2001).

    Google Scholar 

  21. H. W. Kunert and E. Lavitska, Cryst. Res. Technol. 36(8–10), 1045 (2001).

    Article  Google Scholar 

  22. H. W. Kunert and J.-H. C. Schönfeldt, Thin Solid Films 428, 15 (2003).

    Article  ADS  Google Scholar 

  23. S. A. Kukushkin and A. V. Osipov, Semiconductors 47(12), 1551 (2013).

    Article  ADS  Google Scholar 

  24. V. V. Ratnikov, A. E. Kalmykov, A. V. Myasoedov, S. A. Kukushkin, A. V. Osipov, and L. M. Sorokin, Tech. Phys. Lett. 39(11), 994 (2013).

    Article  ADS  Google Scholar 

  25. R. K. Annabattula and P. R. Onck, J. Appl. Phys. 109,033517 (2011).

    Article  ADS  Google Scholar 

  26. B. Audoly, Phys. Rev. Lett. 83(20), 4124 (1999).

    Article  ADS  Google Scholar 

  27. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouil- lon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zérah, and J. W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009). www.abinit.org.

    Article  ADS  Google Scholar 

  28. A.A. Stekolnikov, J. Furthmüller, and F. Bechstedt, Phys. Rev. B: Condens. Matter 65, 115318 (2002).

    Article  ADS  Google Scholar 

  29. T. Takai, T. Halicioglu, and W. A. Tiller, Surf. Sci. 164(2–3), 341 (1985).

    Article  ADS  Google Scholar 

  30. D. Holec and P. H. Mayrhofer, Scr. Mater. 67, 760 (2012).

    Article  Google Scholar 

  31. V. Jindal, PhD Thesis (University at Albany, State University of New York, Albany, New York, 2008).

  32. Z. Y. Huang, W. Hong, and Z. Suo, J. Mech. Phys. Solids 53, 2101 (2005).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. V. Jindal and F. Shahedipour-Sandvik, J. App. Phys. 105, 084902 (2009).

    Article  ADS  Google Scholar 

  34. J. Kioseoglou, Ph. Komninou, and Th. Karakostas, Phys. Status Solidi A 206(8), 1931 (2009).

    Article  ADS  Google Scholar 

  35. J. Tersoff, Appl. Phys. Lett. 62(7), 693 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Telyatnik.

Additional information

Original Russian Text © R.S. Telyatnik, A.V. Osipov, S.A. Kukushkin, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 1, pp. 153–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telyatnik, R.S., Osipov, A.V. & Kukushkin, S.A. Pore- and delamination-induced mismatch strain relaxation and conditions for the formation of dislocations, cracks, and buckles in the epitaxial AlN(0001)/SiC/Si(111) heterostructure. Phys. Solid State 57, 162–172 (2015). https://doi.org/10.1134/S106378341501031X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341501031X

Keywords

Navigation