Skip to main content
Log in

Synergetics of the interaction of mobile and immobile dislocations in the formation of dislocation structures in a shock wave. Effect of the stacking fault energy

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A kinetic equation for the density of dislocations, which reflects the main stages of the formation of dislocation structures of different types in a shock wave, has been formulated based on the analysis of the interaction of two kinetic processes described by reaction-diffusion type equations for densities of mobile dislocations and dislocations forming immobile dipoles, respectively. It has been shown that an inhomogeneous (cellular) dislocation structure is formed at relatively low pressures behind the front of a shock wave, whereas a uniform distribution of the dislocation density with stacking faults appears at high pressures. The transition from a cellular dislocation density distribution to a uniformly distributed dislocations with stacking faults depends on the stacking fault energy γ D of the metal: the lower is the stacking fault energy, the lower is the pressure in the shock wave σ c at which the cellular dislocation structure transforms into the structure with a uniform dislocation density distribution. It has been found that the dependence of the critical pressure on the stacking fault energy γ D is described by the law σ c ∼ (γ D b)2/3 (where μ is the shear modulus and b is the Burgers vector), which is confirmed in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Meyers, H. Jarmakani, E. M. Bringa, and B. A. Remington, in Dislocation in Solids, Ed. by J. P. Hirth and L. Kubin (Elsevier, Amsterdam, The Netherlands, 2009), Vol. 15, Chap. 89, p. 96.

  2. G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, Phys.-Usp. 50(8), 771 (2007).

    Article  ADS  Google Scholar 

  3. L. E. Murr, in Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. M. A. Meyers and L. E. Murr (Plenum, New York, 1981), p. 202.

  4. M. A. Meyers, F. Gregory, B. K. Kad, M. S. Schneider, D. H. Kalantar, B. A. Remington, G. Ravichandran, T. Boehly, and J. S. Wark, Acta Mater. 51, 1211 (2003).

    Article  Google Scholar 

  5. C. H. Lu, B. A. Remington, B. R. Maddox, B. Kad, H.S. Park, M. Kawasaki, T. G. Langdon, and M. A. Meyers, Acta Mater. 56, 5584 (2008).

    Article  Google Scholar 

  6. H. Jarmakani, E. M. Bringa, P. Erhart, B. A. Remington, Y. M. Wang, N. Q. Vo, and M. A. Meyers, Acta Mater. 61, 7767 (2013).

    Article  Google Scholar 

  7. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 56(11), 2239 (2014).

    Article  ADS  Google Scholar 

  8. Y. Liao, Ch. Ye, H. Gao, B.-J. Kim, S. Suslov, E. A. Stach, and G. J. Cheng, J. Appl. Phys. 110, 023518 (2011).

    Article  ADS  Google Scholar 

  9. M. A. Meyers, M. S. Schneider, H. Jarmakani, B. K. Kad, B. A. Remington, D. H. Kalantar, J. McNaney, B. Cao, and J. Wark, Metall. Mater. Trans. A 39, 304 (2008).

    Article  Google Scholar 

  10. C. H. Lu, B. A. Remington, B. R. Maddox, B. Kad, H. S. Park, S. T. Prisbrey, and M. A. Meyers, Acta Mater. 60, 6601 (2012).

    Article  Google Scholar 

  11. P. A. Zhilyaev, A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Phys. Solid State 52(8), 1619 (2010).

    Article  ADS  Google Scholar 

  12. M. A. Shehadeh, E. M. Bringa, H. M. Zbib, J. M. McNaney, and B. A. Remington, Appl. Phys. Lett. 89, 171918 (2006).

    Article  ADS  Google Scholar 

  13. A. G. Froseth, P. M. Derlet, and H. Van Swygenhoven, Acta Mater. 52, 5870 (2004).

    Google Scholar 

  14. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 56(6), 1168 (2014).

    Article  ADS  Google Scholar 

  15. G. A. Malygin, Phys.-Usp. 42(9), 887 (1999).

    Article  ADS  Google Scholar 

  16. G. A. Malygin, Phys. Solid State 37(1), 1 (1995).

    ADS  Google Scholar 

  17. G. A. Malygin, Sov. Phys. Solid State 34(9), 1543 (1992).

    ADS  Google Scholar 

  18. B. S. Kerner and V. V. Osipov, Sov. Phys.-Usp. 33(9), 679 (1990).

    Article  ADS  Google Scholar 

  19. B. L. Holian, Phys. Rev. A: At., Mol., Opt. Phys. 37, 2562 (1988).

    Article  ADS  Google Scholar 

  20. R. A. Austin and D. L. McDowell, Int. J. Plast. 32/33, 134 (2012).

    Article  Google Scholar 

  21. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55(11), 2280 (2013).

    Article  ADS  Google Scholar 

  22. R. J. de Angelis and J. B. Cohen, J. Met. 15, 681 (1963).

    Google Scholar 

  23. A. Seeger, R. Berner, and H. Wolf, Z. Phys. 155, 247 (1959).

    Article  ADS  Google Scholar 

  24. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967; Atomizdat, Moscow, 1972).

    Google Scholar 

  25. O. Vöringer, Z. Metallkd. 11, 1119 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Original Russian Text © G.A. Malygin, S.L. Ogarkov, A.V. Andriyash, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 1, pp. 75–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygin, G.A., Ogarkov, S.L. & Andriyash, A.V. Synergetics of the interaction of mobile and immobile dislocations in the formation of dislocation structures in a shock wave. Effect of the stacking fault energy. Phys. Solid State 57, 79–86 (2015). https://doi.org/10.1134/S1063783415010205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415010205

Keywords

Navigation