Skip to main content
Log in

Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The formation of arrays of Ag and Au nanoparticles from the vapor deposition phase on an unheated thin-film amorphous carbon substrate has been systematically investigated using transmission electron microscopy. It has been found that there is a significant dependence of the size of particles and the density of their location on the surface on the amount of evaporated silver or gold. In particular, for a gold sample weighing ∼2 mg, the predominant diameter of clusters is ∼9 nm at a surface distribution density of ∼10000 μm−2, whereas during evaporation of a larger sample weighing ∼11 mg, the predominant diameter of clusters is ∼35 nm at a surface distribution density of ∼200 μm−2. A phenomenological description of the formation of an array of nanoparticles through thermal evaporation and condensation under vacuum onto an unheated surface has been presented. The specific features of the process have been considered. It has been concluded that the nucleation of a silver or gold particle on the surface gives rise to a flow of vaporous silver or gold, which is directed to this particle and, thus, maintains it in a hot state and determines its growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ohta, Y. Okamoto, S. Irle, and K. Morokuma, ACS Nano 2, 1437 (2008).

    Article  Google Scholar 

  2. H. Shiozawa, T. Pichler, A. Grüneis, R. Pfeiffer, H. Kuzmany, Z. Liu, K. Suenaga, and H. Kataura, Adv. Mater. (Weinheim) 20, 1443 (2008).

    Article  Google Scholar 

  3. D. Ciuparu, Y. Chen, S. Lim, Y. Yang, G. L. Haller, and L. Pfefferle, J. Phys. Chem. B 108, 15565 (2004).

    Article  Google Scholar 

  4. J. Robertson, J. Mater. Chem. 22, 19858 (2012).

    Article  Google Scholar 

  5. D. E. Perea, N. Li, R. M. Dickerson, A. Misra, and S. T. Picraux, Nano Lett. 11, 3117 (2011).

    Article  Google Scholar 

  6. T. Ghoshal, S. Biswas, and S. Kar, J. Phys. Chem. C 112, 20138 (2008).

    Article  Google Scholar 

  7. J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, and L. J. Lauhon, Nat. Nanotechnol. 3, 168 (2008).

    Article  ADS  Google Scholar 

  8. M. T. Borgström, G. Immink, B. Ketelaars, R. Algra, and E. P. A. M. Bakkers, Nat. Nanotechnol. 2, 541 (2007).

    Article  ADS  Google Scholar 

  9. G. Prieto, J. Zečević, H. Friedrich, K. P. De Jong, and P. E. De Jongh, Nat. Mater. 12, 34 (2013).

    Article  ADS  Google Scholar 

  10. T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J. Huang, T. Ishida, and M. Haruta, Adv. Catal. 55, 1 (2012).

    Google Scholar 

  11. M. Sanles-Sobrido, W. Exner, L. Rodrífguez-Lorenzo, B. Rodríguez-González, M. A. Correa-Duarte, R. A. Á. Ivarez-Puebla, and L. M. Liz-Marzan, J. Am. Chem. Soc. 131, 2699 (2009).

    Article  Google Scholar 

  12. C. Shen, C. Hui, T. Yang, C. Xiao, J. Tian, L. Bao, S. Chen, H. Ding, and H. Gao, Chem. Mater. 20, 6939 (2008).

    Article  Google Scholar 

  13. M. F. Kircher, A. De La Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Melinghoff, E. C. Holland, and S. S. Gambhir, Nat. Med. 18, 829 (2012).

    Article  Google Scholar 

  14. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, Lasers Surg. Med. 38, 631 (2006).

    Article  Google Scholar 

  15. Chang-Po Hsiung, Hsin-Wei Liao, Jon-Yiew Gan, Tai-Bo Wu, Jenn-Chang Hwang, Frederick Chen, and Ming-Jinn Tsai, ACS Nano 4, 5414 (2010).

    Article  Google Scholar 

  16. Jin Hyung Jun, Kyoungah Cho, Junggwon Yun, and Sangsig Kim, J. Mater. Sci. 46, 6767 (2011).

    Article  ADS  Google Scholar 

  17. N. J. Lee, B. H. An, A. Y. Koo, H. M. Ji, J. W. Cho, Y. J. Choi, Y. K. Kim, and C. J. Kang, Appl. Phys. A: Mater. Sci. Process. 102, 897 (2011).

    Article  ADS  Google Scholar 

  18. S. Zhan, X. Hu, J. Fan, Q. Zhang, R. Ji, Y. Wang, T. Miao, X. Sun, and Y. Hao, Technical Proceedings of the 2013 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech, Washington, United States, May 12–15, 2013 (Washington, 2013), Vol. 1, p. 77.

    Google Scholar 

  19. Z. Starowicz, M. Lipin’ski, K. Berent, R. Socha, K. Szczepanowicz, and T. Kruk, Plasmonics 8, 41 (2013).

    Article  Google Scholar 

  20. Y. Wang, N. Chen, X. Zhang, X. Yang, Y. Bai, M. Cui, Y. Wang, X. Chen, and T. Huang, J. Semicond. 30,072005 (2009).

    Article  Google Scholar 

  21. N. G. Khlebtsov, J. Quant. Spectrosc. Radiat. Transfer 123, 184 (2013).

    Article  ADS  Google Scholar 

  22. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, Rep. Prog. Phys. 75, 036501 (2012).

    Article  ADS  Google Scholar 

  23. J. Z. Zhang and C. Noguez, Plasmonics 3, 127 (2008).

    Article  Google Scholar 

  24. J. F. Hamilton and P. C. Logel, Thin Solid Films 16, 49 (1973).

    Article  ADS  Google Scholar 

  25. I. M. Goldby, L. Kuipers, B. von Issendorff, and R. E. Palmer, Appl. Phys. 69, 2819 (1996).

    ADS  Google Scholar 

  26. A. A. Schmidt, H. Eggers, K. Herwig, and R. Anton, Surf. Sci. 349, 301 (1996).

    Article  ADS  Google Scholar 

  27. J. Carrey, J.-L. Maurice, F. Petroff, and A. Vaures, Surf. Sci. 504, 75 (2002).

    Article  ADS  Google Scholar 

  28. C. Gatel and E. Snoeck, Surf. Sci. 600, 2650 (2006).

    Article  ADS  Google Scholar 

  29. M. Sui, M.-Y. Li, E.-S. Kim, and J. Lee, Nanoscale Res. Lett. 8, 525 (2013).

    Article  ADS  Google Scholar 

  30. D. G. Gromov, O. V. Pyatilova, S. V. Bulyarskii, A. N. Belov, and A. A. Raskin Phys. Solid State 55(3), 619 (2013).

    Article  ADS  Google Scholar 

  31. A. N. Belov, S. V. Bulyarsky, D. G. Gromov, L. M. Pavlova, and O. V. Pyatilova, CALPHAD: Comput Coupling Phase Diagrams Thermochem. 44, 138 (2014).

    Article  Google Scholar 

  32. L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).

    Google Scholar 

  33. J. P. Hirth and G. M. Pound, Condensation and Evaporation (Macmillan, New York, 1963).

    Google Scholar 

  34. R. A. Sigsbee and G. M. Pound, Adv. Colloid Interface Sci. 1, 335 (1967).

    Article  Google Scholar 

  35. D. Walton, J. Chem. Phys. 37, 2181 (1962).

    Article  ADS  Google Scholar 

  36. D. Walton, Philos. Mag. 7, 1671 (1962).

    Article  ADS  Google Scholar 

  37. T. Rhodin and D. Walton, Single-Crystal Films, Ed. by M. N. Francombe and H. Sato (Pergamon, New York, 1964), p. 31.

  38. D. W. Oxtoby and R. Evans, J. Chem. Phys. 89, 7521 (1988).

    Article  ADS  Google Scholar 

  39. C. Revenant, G. Renaud, R. Lazzari, and J. Jupille, Phys. Rev. B: Condens. Matter 79, 235424 (2009).

    Article  ADS  Google Scholar 

  40. D. G. Gromov and S. A. Gavrilov, Phys. Solid State 51(10), 2135 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Gromov.

Additional information

Original Russian Text © D.G. Gromov, L.M. Pavlova, A.I. Savitskii, A.Yu. Trifonov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 1, pp. 163–169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, D.G., Pavlova, L.M., Savitskii, A.I. et al. Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum. Phys. Solid State 57, 173–180 (2015). https://doi.org/10.1134/S1063783415010126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415010126

Keywords

Navigation