Skip to main content
Log in

Effect of an iodine-containing additive on the composition, structure, and morphology of chemically deposited lead selenide films

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of an ammonium iodide additive on the elemental and phase compositions, structural parameters, and surface morphology of lead selenide films synthesized by chemical deposition from aqueous solutions has been studied using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray analysis. It has been established that the obtained PbSe films have a multiphase structure. The iodine content of the films is directly proportional to the NH4I concentration in the reaction mixture and increases linearly with an increase in this concentration to 0.25 mol/L. No individual iodine-containing phases have been detected in the film structure. However, the introduction of iodine leads to an increase in the PbSe phase lattice parameter from ∼6.11 to ∼6.16 Å and to a decrease in the crystal grain size to ∼ 20 nm. It has been found that there is a correlation between the grain size, lattice parameter, and ammonium iodide concentration in the reaction mixture, which can be explained by changes in the film growth mechanism at the initial growth steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Moss, G. Burrell, and B. Ellis, Semiconductor Opto-Electronics (Wiley, New York, 1973; Mir, Moscow, 1976).

    Google Scholar 

  2. N. P. Anisimova, N. E. Tropina, and A. N. Tropin, Semiconductors 44(12), 1554 (2010).

    Article  ADS  Google Scholar 

  3. D. Parker, D. J. Singh, Q. Zhang, and Z. Ren, J. Appl. Phys. 111(12), 123701 (2012).

    Article  ADS  Google Scholar 

  4. T. A. Gavrikova, V. A. Zykov, and S. A. Nemov, Semiconductors 30(4), 386 (1996).

    ADS  Google Scholar 

  5. V. F. Markov, L. N. Maskaeva, and G. A. Kitaev, Russ. J. Appl. Chem. 73(8), 1328 (2000).

    Google Scholar 

  6. V. F. Markov, A. V. Shnaider, M. P. Mironov, V. F. D’yakov, and L. N. Maskaeva, Perspekt. Mater., No. 3, 28 (2008).

    Google Scholar 

  7. M. C. Torquemada, M. T. Rodrigo, G. Vergara, F. J. Sánchez, R. Almazán, M. Verdü, P. Rodríguez, V. Villamayor, L. J. Gómez, and M. T. Montojo, J. Appl. Phys. 93(3), 1778 (2003).

    Article  ADS  Google Scholar 

  8. N. V. Golubchenko, M. A. Iosht, V. A. Moshnikov, and D. B. Chesnokova, Perspekt. Mater., No. 3, 31 (2005).

    Google Scholar 

  9. N. V. Golubchenko, V. A. Moshnikov, and D. B. Chesnokova, Inorg. Mater. 42(9), 942 (2006).

    Article  Google Scholar 

  10. N. V. Golubchenko, V. A. Moshnikov, and D. B. Chesnokova, Glass Phys. Chem. 32(3), 337 (2006).

    Article  Google Scholar 

  11. E. V. Maraeva, V. A. Moshnikov, and Yu. M. Tairov, Semiconductors 47(10), 1422 (2013).

    Article  Google Scholar 

  12. V. F. Markov, L. N. Maskaeva, I. V. Zarubin, and N. V. Zamaraeva, Voda: Khim. Ekol., No. 6, 80 (2012).

    Google Scholar 

  13. G. A. Kitaev and A. Zh. Khvorenkova, Russ. J. Appl. Chem. 72(9), 1520 (1999).

    Google Scholar 

  14. H. M. Ali and S. A. Saleh, Thin Solid Films 556, 552 (2014).

    Article  ADS  Google Scholar 

  15. D. Khokhlov, in Lead Chalcogenides: Physics and Applications, Ed. by D. Khokhlov (Taylor and Francis, New York, 2003).

  16. H. M. Rietveld, J. Appl. Crystallogr. 2(2), 65 (1969).

    Article  Google Scholar 

  17. N. G. Polyanskii, Lead (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  18. V. F. Markov and L. N. Maskaeva, Butlerov. Soobshch. 24(2), 42 (2011).

    Google Scholar 

  19. W. H. Hall, Proc. Phys. Soc., London, Ser. A 62(11), 741 (1949).

    Article  ADS  Google Scholar 

  20. W. H. Hall and G. K. Williamson, Proc. Phys. Soc., London B 64(11), 937 (1951).

    Article  ADS  Google Scholar 

  21. G. K. Williamson and W. H. Hall, Acta Metall. 1(1), 22 (1953).

    Article  Google Scholar 

  22. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Naukova Dumka, Kiev, 1983; Springer-Verlag, Berlin, 1996).

    Google Scholar 

  23. Ya. S. Umanskii and A. N. Ivanov, Crystallography, X-Ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  24. V. S. Urusov, Theoretical Crystal Chemistry (Moscow State University, Moscow, 1987) [in Russian].

    Google Scholar 

  25. N. F. Uvarov and V. V. Boldyrev, Usp. Khim. 70(4), 307 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. I. Smirnova.

Additional information

Original Russian Text © Z.I. Smirnova, V.M. Bakanov, L.N. Maskaeva, V.F. Markov, V.I. Voronin, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2468–2474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, Z.I., Bakanov, V.M., Maskaeva, L.N. et al. Effect of an iodine-containing additive on the composition, structure, and morphology of chemically deposited lead selenide films. Phys. Solid State 56, 2561–2567 (2014). https://doi.org/10.1134/S1063783414120324

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120324

Keywords

Navigation