Skip to main content
Log in

Structure, Optical, and Photoelectric Properties of Lead-Sulfide Films Doped with Strontium and Barium

  • MICROCRYSTALLINE, NANOCRYSTALLINE, POROUS, AND COMPOSITE SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Evolution of the morphology, composition, structural characteristics (lattice constant, microstrains, texturing), and optical and photoelectric properties of PbS films produced by chemical bath deposition in the presence of ammonium iodide and strontium or barium chlorides at a concentration up to 5 mM is studied. According to the data of energy dispersive X-ray analysis, the content of strontium in the PbS films is 0.4–0.7 at %, whereas the content of barium is beyond the determination error. The size of the particles forming the films varies from ~200 to ~400 nm, and the size distribution of the particles is monomodal. The introduction of NH4I and SrCl2 or BaCl2 into the reactor retains the B1 cubic structure of lead sulfide, but gives rise to an unsteady change in the lattice parameter, which is due to the creation of vacancy-type or interstitial ion defects. The introduction of salts of strontium or barium does not influence the band gap, but changes the intensities of the impurity absorption bands deep in the band gap or near the bottom of the conduction band. The dependences of the volt–watt sensitivity of the films on the content of salts of strontium and barium are of an extreme character and show maxima at 0.05 and 0.1 mM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. N. Kurbatov, Vopr. Oboron. Tekh., No. 11, 3 (1995).

  2. A. B. Rohom, P. U. Londhe, P. R. Jadhav, G. R. Bhand, and N. B. Chaure, J. Mater. Sci.: Mater. Electron. 28, 17107 (2017).

    Google Scholar 

  3. V. F. Markov and L. N. Maskaeva, J. Anal. Chem. 56, 754 (2001).

    Article  Google Scholar 

  4. I. V. Zarubin, V. F. Markov, L. N. Maskaeva, N. V. Zarubina, and M. V. Kuznetsov, J. Anal. Chem. 72, 327 (2017).

    Article  Google Scholar 

  5. V. F. Markov, L. N. Maskaeva A. V. Shnaider, and R. Kh. Saryeva, Tekhnosf. Bezopasn., No. 1, 32 (2015).

  6. A. S. Obaid, Z. Hassan, M. A. Mahdi, and M. Bououdina, Sol. Energy 89, 143 (2013).

    Article  ADS  Google Scholar 

  7. P. Wang, L. Cao, Y. Wu, and J. Di, Microchim, Acta 185, 356 (2018).

    Google Scholar 

  8. V. F. Markov, L. N. Maskaeva, and G. A. Kitaev, Russ. J. Appl. Chem. 73, 1328 (2000).

    Google Scholar 

  9. T. A. Alekseeva, V. F. Markov, L. N. Maskaeva, N. A. Tret’yakova, and V. I. Voronin, Butler. Soobshch. 17, 3 (2009).

    Google Scholar 

  10. V. I. Kaidanov and Yu. I. Ravich, Sov. Phys. Usp. 28, 31 (1985).

    Article  ADS  Google Scholar 

  11. C. Rajashree, A. R. Balu, and V. S. Nagarethinam, J. Mater. Sci.: Mater. Electron. 27, 5078 (2016).

    Google Scholar 

  12. A. Gassoumi, S. Alleg, and N. Kamoun-Turki, J. Mol. Struct. 1116, 67 (2016).

    Article  ADS  Google Scholar 

  13. Y. Yücel and B. Beleli, Mater. Res. Express 5, 056408 (2018).

    Article  ADS  Google Scholar 

  14. M. M. Tavakolia, Proc. Eng. 139, 117 (2016).

    Article  Google Scholar 

  15. E. Yücel and Y. Yücel, Optik 142, 82 (2017).

    Article  ADS  Google Scholar 

  16. E. Yücel and Y. Yücel, Ceram. Int. 43, 407 (2017).

    Article  Google Scholar 

  17. L. N. Maskaeva, E. V. Mostovshchikova, V. F. Markov, and V. I. Voronin, Semiconductors 53, 165 (2019).

    Article  ADS  Google Scholar 

  18. Y. Gülen, Acta Phys. Polon. 126, 763 (2014).

    Article  ADS  Google Scholar 

  19. L. N. Maskaeva, E. E. Lekomtseva, V. F. Markov, and A. D. Kutyavina, Butler. Soobshch. 58, 90 (2019).

    Google Scholar 

  20. D. L. Bush and J. E. Post, Rev. Mineral. 20, 369 (1990).

    Google Scholar 

  21. J. Rodriges-Carvajal, Phys. B (Amsterdam, Neth.) 192, 55 (1993).

  22. R. F. Zaikina, G. A. Borzova, and N. R. Mazhrenova, Vestn. KazGU, Ser. Fiz., No. 2, 108 (1995).

  23. V. S. Urusov, Theoretical Crystal Chemistry (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  24. Z. I. Smirnova, V. M. Bakanov, L. N. Maskaeva, V. F. Markov, and V. I. Voronin, Phys. Solid State 56, 2561 (2014).

    Article  ADS  Google Scholar 

  25. T. Ungar, I. Dragomir, A. Revesz, and A. Borbely, J. Appl. Crystallogr. 32, 992 (1999).

    Article  Google Scholar 

  26. A. N. Veis, Nauch.-Tekh. Vedom. SPbGPU, Fiz.-Mat. Nauki 213, 9 (2015).

    Google Scholar 

  27. W. W. Scanlon, Solid State Phys. 9, 83 (1959).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Government of the Russian Federation, program 211, project no. 02.A03.21.0006 and the Ministry of Education and Science of the Russian Federation, plan target A-19-1190318.90025-9 and government order, theme “Flux” no. AAAA-A18-118020190112-8 and theme “Spin” no. AAAA-A18-118020290104-2. The study was supported in part by the Russian Foundation for Basic Research, project no. 18-29-11051 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Mostovshchikova, E.V., Voronin, V.I. et al. Structure, Optical, and Photoelectric Properties of Lead-Sulfide Films Doped with Strontium and Barium. Semiconductors 54, 1230–1240 (2020). https://doi.org/10.1134/S1063782620100231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620100231

Keywords:

Navigation