Skip to main content
Log in

Chemisorption of ammonia molecules on ytterbium nanofilms deposited on silicon Si(111) at room temperature

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The interaction of ammonia molecules with the surface of ytterbium nanofilms of uniform thickness grown on a Si(111) 7 × 7 substrate and forming a chemically sharp interface with it has been investigated. It has been found that this interaction depends significantly on the thickness of nanofilms. For a film thickness equal to 5 monoatomic layers, chemisorption of ammonia has an essentially nondissociative character and the molecules form a donor-acceptor bond with ytterbium; as a result, the metal transforms from the divalent state into a new nonautonomous trivalent state. For other film thicknesses, the adsorbed molecules dissociate, nitrogen atoms diffuse into the bulk of the film and enter into the reaction with silicon, and ytterbium remains in the initial divalent state. It has been shown that the character of the interaction of ammonia molecules with ytterbium nanofilms and the stability of the NH3-Yb-Si(111) structures are determined by the standing waves of electron density (Friedel oscillations) generated by the interface between the metal and silicon substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Shikin, Formation, Electronic Structure, and Properties of Low-Dimensional Structures Based on Metals (VVM, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  2. G. Cao and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (World Scientific, Singapore, 2011), Vol. 2.

    Book  Google Scholar 

  3. J.-W. He, W. K. Kuhn, L.-W. Leung, and D. W. Goodman, J. Chem. Phys. Chem. 93, 7463 (1990).

    Article  ADS  Google Scholar 

  4. J.-W. He, C. A. Estrada, J. S. Corneille, and M.-Ch. Wu, Surf. Sci. 261, 164 (1992).

    Article  ADS  Google Scholar 

  5. M. Rauh, B. Heping, and P. Wissmann, Appl. Phys. A: Mater. Sci. Process. 61, 587 (1995).

    Article  ADS  Google Scholar 

  6. B. Hammer, Y. Morikawa, and J. K. Nørskov, Phys. Rev. Lett. 76, 2141 (1996).

    Article  ADS  Google Scholar 

  7. P. Jakob and A. Schlapka, Surf. Sci. 601, 1556 (2007).

    Article  Google Scholar 

  8. F. Voigts, F. Bebensee, S. Dahle, K. Volgmann, and W. Maus-Friedrichs, Surf. Sci. 603, 40 (2009).

    Article  ADS  Google Scholar 

  9. N. Schumacher, K. Andersson, L. C. Grabow, M. Mavrikakis, J. Nerlov, and I. Chorkendorff, Surf. Sci. 602, 702 (2008).

    Article  ADS  Google Scholar 

  10. F. Bebensee, F. Foigts, and W. Maus-Friedrichs, Surf. Sci. 602, 1622 (2008).

    Article  ADS  Google Scholar 

  11. M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 51(4), 841 (2009).

    Article  ADS  Google Scholar 

  12. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 52(3), 625 (2010).

    Article  ADS  Google Scholar 

  13. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 52(6), 1279 (2010).

    Article  ADS  Google Scholar 

  14. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 53(6), 1292 (2011).

    Article  ADS  Google Scholar 

  15. D. V. Buturovich, M. V. Kuz’min, and M. A. Mittsev, Tech. Phys. Lett. 38(11), 969 (2012).

    Article  ADS  Google Scholar 

  16. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 54(10), 2117 (2012).

    Article  ADS  Google Scholar 

  17. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 56(7), 1449 (2014).

    Article  ADS  Google Scholar 

  18. D. V. Buturovich, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 50(1), 173 (2008).

    Article  ADS  Google Scholar 

  19. D. V. Buturovich, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 48(11), 2205 (2006).

    Article  ADS  Google Scholar 

  20. T. V. Krachino, M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 39(2), 224 (1997).

    Article  ADS  Google Scholar 

  21. M. V. Kuz’min and M. A. Mittsev, Phys. Solid State 53(3), 612 (2011).

    Article  ADS  Google Scholar 

  22. M. V. Kuz’min, M. V. Loginov, and M. A. Mittsev, Phys. Solid State 50(2), 369 (2008).

    Article  ADS  Google Scholar 

  23. H. B. Gray, Electrons and Chemical Bonding (W. A. Benjamin, New York, 1964; Mir, Moscow, 1967).

    Google Scholar 

  24. L. V. Gurvich, G. V. Karachentsev, V. N. Kondrat’ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, Energies of Breaking of Chemical Bonds, Ionization Potentials, and Electron Affinity (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  25. G. Blyholder, J. Phys. Chem. 68, 2772 (1964).

    Article  Google Scholar 

  26. G. Doyen and G. Ertl, Surf. Sci. 43, 197 (1974).

    Article  ADS  Google Scholar 

  27. J. Küpers, Surf. Sci. 36, 53 (1973).

    Article  Google Scholar 

  28. K. A. Gscheidner, Jr., J. Less-Common Met. 17, 13 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mittsev.

Additional information

Original Russian Text © M.V. Kuz’min, M.A. Mittsev, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2457–2463.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’min, M.V., Mittsev, M.A. Chemisorption of ammonia molecules on ytterbium nanofilms deposited on silicon Si(111) at room temperature. Phys. Solid State 56, 2548–2555 (2014). https://doi.org/10.1134/S1063783414120208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120208

Keywords

Navigation