Skip to main content
Log in

Effect of iron doping on the structural and magnetic properties of ZnO nanoparticles prepared by pulsed electron beam evaporation

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanocrystalline ZnO, ZnO-Zn, and ZnO-Zn-Fe powders with a specific surface area up to 45 m2/g and a low Fe concentration (no more than 0.619 wt %) have been prepared using pulsed electron beam evaporation. The crystal structure, morphology, and size of the nanoparticles have been determined using X-ray powder diffraction, transmission electron microscopy, and scanning electron microscopy. It has been found that the magnetization of the ZnO-Zn and ZnO-Zn-Fe nanopowders increases after annealing in an oxidizing atmosphere. An elemental mapping with energy-dispersive X-ray analysis has revealed the absence of Fe clusters in the ZnO-Zn-Fe sample. A thermal analysis has demonstrated that dopants of Fe in ZnO increase the temperature of complete oxidation of Zn nanoparticles to 600°C, which creates favorable conditions for an increase in the density of structural defects upon oxidation of Zn to ZnO. The absence of clusters and secondary magnetic Fe phases in pure and doped ZnO-based nanopowders indicates the intrinsic nature of ferromagnetism at room temperature in nanopowders prepared by pulsed electron beam evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, Nat. Mater. 9, 965 (2010).

    Article  ADS  Google Scholar 

  2. H. Ohno, Nat. Mater. 9, 952 (2010).

    Article  ADS  Google Scholar 

  3. R. B. Morgunov and A. I. Dmitriev, Phys. Solid State 51(10), 1985 (2009).

    Article  ADS  Google Scholar 

  4. S. J. Pearton, D. P. Norton, M. P. Ivill, A. F. Hebard, J. M. Zavada, W. M. Chen, and I. A. Buyanova, J. Electron. Mater. 36, 462 (2007).

    Article  ADS  Google Scholar 

  5. C. Liu, F. Yun, and H. Morkoc, J. Mater. Sci.: Mater. Electron. 16, 555 (2005).

    Google Scholar 

  6. F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, Mater. Sci. Eng., R 62, 1 (2008).

    Article  Google Scholar 

  7. B. B. Straumal, F. F. Mazilkin, S. G. Protasova, A. A. Myatiev, P. B. Straumal, G. Schutz, P. A. van Aken, E. Goering, and B. Baretzky, Phys. Rev. B: Condens. Matter 79, 205206 (2009).

    Article  ADS  Google Scholar 

  8. T. Tietze, M. Gacic, G. Schutz, G. Jakob, S. Bruck, and E. Goering, New J. Phys. 10, 055009 (2008).

    Article  ADS  Google Scholar 

  9. L. I. Burova, N. S. Perov, A. S. Semisalova, V. A. Kulbachinskii, V. G. Kytin, V. V. Roddatis, A. L. Vasiliev, and A. R. Kaul, Thin Solid Films 520, 4580 (2012).

    Article  Google Scholar 

  10. S. Yu. Sokovnin, V. G. Il’ves, A. I. Surdo, I. I. Mil’man, and M. I. Vlasov, Nanotechnol. Russ. 8(7–8), 466 (2013).

    Article  Google Scholar 

  11. J. M. D. Coey, Solid State Sci. 7, 660 (2005).

    Article  ADS  Google Scholar 

  12. N. H. Hong, J. Sakai, and V. Brize, J. Phys.: Condens. Matter 19, 036219 (2007).

    ADS  Google Scholar 

  13. K. Ackland, L. M. A. Monzon, M. Venkatesan, and J. M. D. Coey, IEEE Trans. Magn. 47, 3509 (2011).

    Article  ADS  Google Scholar 

  14. Y. L. Zheng, C. M. Zhen, X. Q. Wang, L. Ma, X. L. Li, and D. L. Hou, Solid State Sci. 13, 1516 (2011).

    Article  ADS  Google Scholar 

  15. V. G. Kytin, V. A. Kul’bachinskii, D. S. Glebov, L. I. Burova, A. R. Kaul’, and O. V. Reukova, Semiconductors 44(2), 155 (2010).

    Article  ADS  Google Scholar 

  16. S. Kolenisk, B. Dabrowski, and J. Mais, J. Appl. Phys. 95, 2582 (2004).

    Article  ADS  Google Scholar 

  17. X. C. Wang, W. B. Mi, and D. F. Kuang, Appl. Surf. Sci. 256, 1930 (2010).

    Article  ADS  Google Scholar 

  18. P. Dhiman, J. Chand, A. Kumar, R. K. Kotnala, K. M. Batoo, and M. Singh, J. Alloys Compd. 578, 235 (2013).

    Article  Google Scholar 

  19. R. Saleh, N. F. Djaja, and S. P. Prakoso, J. Alloys Compd. 546, 48 (2013).

    Article  Google Scholar 

  20. R. Hong, H. Wen, C. Liu, J. Chen, and J. Liao, J. Cryst. Growth 314, 30 (2011).

    Article  ADS  Google Scholar 

  21. P. Dhiman, S. K. Sharma, M. Knobel, R. Ritu, and M. Singh, Res. J. Chem. Sci. 1(8), 48 (2012).

    Google Scholar 

  22. R. Saleh, S. P. Prakoso, and A. Fishli, J. Magn. Magn. Mater. 324 665 (2012).

  23. S. George, S. Pokhrel, T. Xia, B. Gilbert, Z. Ji, M. Schowalter, A. Rosenauer, R. Damoiseaux, K. A. Bradley, L. Madler, and A. E. Nel, ACS Nano 4, 15 (2010).

    Article  Google Scholar 

  24. J. Anghel, A. Thurber, D. A. Tenne, C. B. Hanna, and A. Punnoose, J. Appl. Phys. 107, 09E314 (2010).

    Article  Google Scholar 

  25. C. Xia, C. Hu, Y. Tian, P. Chen, B. Wan, and J. Xu, Solid State Sci. 13, 388e393 (2011).

    Google Scholar 

  26. A. Franco, Jr., and T. E. P. Alves, Mater. Sci. Semicond. Proc. 16, 1804 (2013).

    Article  Google Scholar 

  27. H. Liua, J. Yanga, Y. Zhanga, Y. Wanga, and M. Wei, Mater. Chem. Phys. 112, 1021 (2008).

    Article  Google Scholar 

  28. Y. Lin, D. Jiang, F. Lin, W. Shi, and X. Ma, J. Alloys Compd. 436, 30 (2007).

    Article  Google Scholar 

  29. H. Liu, J. Yang, Y. Zhang, L. Yang, M. Wei, and X. Ding, J. Phys.: Condens. Matter 21, 145803 (2009).

    ADS  Google Scholar 

  30. B. Panigrahy, M. Aslam, and D. Bahadur, Nanotechnology 23, 115601 (2012).

    Article  ADS  Google Scholar 

  31. D. Y. Inamdar, A. K. Pathak, I. Dubenko, N. Ali, and S. Mahamuni, J. Phys. Chem. C 115, 23671 (2011).

    Article  Google Scholar 

  32. M. V. Limaye, S. B. Singh, R. Das, P. Poddar, and S. K. Kulkarni, J. Solid State Chem. 184, 391 (2011).

    Article  ADS  Google Scholar 

  33. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, P. B. Straumal, A. A. Myatiev, G. Schütz, E. J. Goering, T. Tietze, and B. Baretzky, Philos. Mag. 93(10–12), 1371 (2013).

    Article  ADS  Google Scholar 

  34. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, A. A. Myatiev, P. B. Straumal, G. Schutz, E. Goering, and B. Baretzky, J. Appl. Phys. 108, 073923 (2010).

    Article  ADS  Google Scholar 

  35. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, T. Tietze, E. Goering, G. Schutz, P. B. Straumal, and B. Baretzky, Beilstein J. Nanotechnol. 4, 361 (2013).

    Article  Google Scholar 

  36. B. B. Straumal, S. G. Protasova, A. A. Mazilkin, G. Schütz, E. Goering, B. Baretzky, and P. B. Straumal, JETP Lett. 97(6), 367 (2013).

    Article  ADS  Google Scholar 

  37. S. Akbar, S. K. Hasanain, M. Abbas, S. Ozcan, B. Ali, and S. I. Shah, Solid State Commun. 151, 17 (2011).

    Article  ADS  Google Scholar 

  38. S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, and H. Schmidt, Appl. Phys. Lett. 93, 232507 (2008).

    Article  ADS  Google Scholar 

  39. P. K. Sharma, R. K. Dutta, and A. C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009).

    Article  ADS  Google Scholar 

  40. S. A. Ahmed, Solid State Commun. 150, 2190 (2010).

    Article  ADS  Google Scholar 

  41. S. Sambasivam, B. C. Choi, and J. G. Lin, J. Solid State Chem. 184, 199 (2011).

    Article  ADS  Google Scholar 

  42. C. Yu. Sokovnin and V. G. Il’ves, Use of a Pulsed Electron Beam for the Preparation of Nanopowders of Some Metal Oxides (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2012).

    Google Scholar 

  43. S. Yu. Sokovnin and V. G. Il’ves, Ferroelectrics 436, 101 (2012).

    Article  Google Scholar 

  44. V. G. Il’ves and S. Yu. Sokovnin, Nanotechnol. Russ. 6(1–2), 137 (2011).

    Article  Google Scholar 

  45. D. Wang, Z. Q. Chen, D. D. Wang, J. Gong, C. Y. Cao, Z. Tang, and L. R. Huang, J. Magn. Magn. Mater. 322, 3642 (2010).

    Article  ADS  Google Scholar 

  46. B. Aleman, Y. Ortega, J. A. Garcia, P. Fernandez, and J. Piqueras, J. Appl. Phys. 110, 014317 (2011).

    Article  ADS  Google Scholar 

  47. P. Wu, G. Saraf, Y. Lu, D. H. Hill, R. Gateau, L. Wielunski, R. A. Bartynski, D. A. Arena, J. Dvorak, A. Moodenbaugh, T. Siegrist, J. A. Raley, and Y. K. Yeo, Appl. Phys. Lett. 89, 012508 (2006).

    Article  ADS  Google Scholar 

  48. D. Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, Phys. Rev. B: Condens. Matter 75, 144404 (2007).

    Article  ADS  Google Scholar 

  49. S. Banerjee, M. Mandal, N. Gayathri, and M. Sardar, Appl. Phys. Lett. 91, 182501 (2007).

    Article  ADS  Google Scholar 

  50. A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X.H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 100, 047206 (2008).

    Article  ADS  Google Scholar 

  51. N. Khare, M. J. Kappers, M. Wei, M. G. Blamire, and J. L. Macmanus-Driscoll, Adv. Mater. (Weinheim) 18, 1449 (2006).

    Article  Google Scholar 

  52. C. Song, K. W. Geng, F. Zeng, X. B. Wang, Y. X. Shen, F. Pan, Y. N. Xie, T. Liu, H. T. Zhou, and Z. Fan, Phys. Rev. B: Condens. Matter 73, 024405 (2006).

    Article  ADS  Google Scholar 

  53. C. Song, F. Zeng, Y. X. Shen, K. W. Geng, Y. N. Xie, Z. Y. Wu, and F. Pan, Phys. Rev. B: Condens. Matter 73, 172412 (2006).

    Article  ADS  Google Scholar 

  54. C. N. Wu, T. S. Wu, S. Y. Huang, W. C. Lee, Y. H. Chang, Y. L. Soo, M. Hong, and J. Kwo, J. Appl. Phys. 113, 17C309 (2013).

    Google Scholar 

  55. C. Song and F. Pan, in Oxide Semiconductors, Ed. by B. G. Svensson, S. J. Pearton, and C. Jagadish (Elsevier, Amsterdam, 2013), Vol. 88, p. 227.

  56. A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X. H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 100, 047206 (2008).

    Article  ADS  Google Scholar 

  57. D. Chakraborti, S. Ramachandran, G. Trichy, J. Narayan, and J. T. Prater, J. Appl. Phys. 101(5), 053918 (2007).

    Article  ADS  Google Scholar 

  58. D. Chakraborti, G. R. Trichy, J. T. Prater, and J. Narayan, J. Phys. D: Appl. Phys. 40, 7606 (2007).

    Article  ADS  Google Scholar 

  59. P. K. Sharma, R. K. Dutta, A. C. Pandey, S. Layek, and H. C. Verma, J. Magn. Magn. Mater. 321, 2587 (2009).

    Article  ADS  Google Scholar 

  60. K. Sato, L. Bergqvist, J. Kudrnovsky, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki, and R. Zeller, Rev. Mod. Phys. 82, 1633 (2010).

    Article  ADS  Google Scholar 

  61. X. Chen, Z. Zhou, K. Wang, X. Fan, S. Hu, Y. Wang, and Yan Huang, Mater. Res. Bull. 44, 799 (2009).

    Article  Google Scholar 

  62. K. Kumar, M. Chitkara, I. S. Sandhu, D. Mehta, and S. Kumar, J. Alloys Compd. 588, 681 (2014).

    Article  Google Scholar 

  63. C. Liu, D. Meng, H. Pang, X. Wu, J. Xie, X. Yu, L. Chen, and X. Liu, J. Magn. Magn. Mater. 324, 3356 (2012).

    Article  ADS  Google Scholar 

  64. Y. Q. Wang, S. L. Yuan, L. Liu, P. Li, X. X. Lan, Z. M. Tian, J. H. He, and S. Y. Yin, J. Magn. Magn. Mater. 320, 1423 (2008).

    Article  ADS  Google Scholar 

  65. X. C. Wang, W. B. Mi, and D. F. Kuang, Appl. Surf. Sci. 256, 1930 (2010).

    Article  ADS  Google Scholar 

  66. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Nat. Mater. 4, 173 (2005).

    Article  ADS  Google Scholar 

  67. X. X. Wei, C. Song, K. W. Geng, F. Zeng, B. He, and F. Pan, J. Phys.: Condens. Matter 18, 7471 (2006).

    ADS  Google Scholar 

  68. S. Yu. Sokovnin, V. G. Il’ves, A. I. Medvedev, and A. M. Murzakaev, Perspekt. Mater. 4, 21 (2013).

    Google Scholar 

  69. J. M. D. Coey, K. Wongsaprom, J. Alaria, and M. Venkatesan, J. Phys. D: Appl. Phys. 41, 134012 (2008).

    Article  ADS  Google Scholar 

  70. L. Y. Li, Y. H. Cheng, X. G. Luo, H. Liu, G. H. Wen, R. K. Zheng, and S. P. Ringer, Nanotechnology 21, 145705 (2010).

    Article  ADS  Google Scholar 

  71. X. Zhang, Y. H. Cheng, L. Y. Li, H. Liu, X. Zuo, G. H. Wen, L. Li, R. K. Zheng, and S. P. Ringer, Phys. Rev. B: Condens. Matter 80, 17 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Il’ves.

Additional information

Original Russian Text © V.G. Il’ves, S.Yu. Sokovnin, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 11, pp. 2201–2211.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ves, V.G., Sokovnin, S.Y. Effect of iron doping on the structural and magnetic properties of ZnO nanoparticles prepared by pulsed electron beam evaporation. Phys. Solid State 56, 2273–2285 (2014). https://doi.org/10.1134/S1063783414110110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414110110

Keywords

Navigation