Skip to main content
Log in

Influence of the chemical composition of Al-based amorphous alloys on thermally induced embrittlement

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Structural changes of rapidly cooled ribbons of the amorphous alloys Al88–86(Ni,Co,Fe)6–8(Y,Gd,Nd,La)5–6, which occur during heating at a rate of 10 K/min and lead to a loss of ductility, have been investigated experimentally. It has been shown that samples of the studied alloys are divided into two groups, in the first of which the loss of ductility is due to the formation of a nanocomposite structure, whereas the embrittlement of samples in the second group is caused by processes of structural relaxation in the amorphous phase (decrease in the concentration of a free volume). It has been established for the first time that there is an empirical correlation between the dynamic temperature, after heating to which the alloys lose their ductility at room temperature, and the ratio of the shear modulus to the elastic modulus of the alloys, which is calculated from the nominal chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-H. Kim, A. Inoue, and T. Masumoto, Mater. Trans., JIM 31(8), 747 (1990).

    Article  Google Scholar 

  2. H. Chen, Y. He, G. J. Shiflet, and S. J. Poon, Scr. Metall. Mater. 25(6), 1421 (1991).

    Article  Google Scholar 

  3. Y.-H. Kim, A. Inoue, and T. Masumoto, Mater. Trans., JIM 32(4), 331 (1991).

    Article  Google Scholar 

  4. B. J. Yang, J. H. Yao, J. Zhang, H. W. Yang, J. O. Wang, and E. Ma, Scr. Mater. 61, 423 (2009).

    Article  Google Scholar 

  5. O. N. Senkov, S. V. Senkova, J. M. Scott, and D. B. Miracle, Mater. Sci. Eng., A 393, 12 (2005).

    Article  Google Scholar 

  6. A. P. Shpak, V. N. Varyukhin, V. I. Tkatch, V. V. Maslov, Y. Y. Beygelzimer, S. G. Synkov, V. K. Nosenko, and S. G. Rassolov, Mater. Sci. Eng., A 425, 172 (2006).

    Article  Google Scholar 

  7. H. S. Kim and S. I. Hong, Acta Mater. 47(7), 2059 (1999).

    Article  MathSciNet  Google Scholar 

  8. M. A. Munoz-Morris, S. Surinach, L. K. Varga, M. D. Baro, and D. G. Morris, Scr. Mater. 47, 31 (2002).

    Article  Google Scholar 

  9. L. Wang, L. Ma, M. Chen, H. Kimura, and A. Inoue, Mater. Scr. Eng., A 325, 182 (2002).

    Article  Google Scholar 

  10. C. A. Schuh, T. C. Hufnagel, and U. Ramamutry, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  11. V. V. Maslov, V. I. Tkach, V. K. Nosenko, S. G. Rassolov, V. V. Maksimov, T. N. Moiseeva, E. A. Sviridova, and V. I. Krysov, Fiz. Tekh. Vys. Davlenii (Donetsk, Ukr.) 21(2), 28 (2011).

    Google Scholar 

  12. J. L. Walter and F. E. Luborsky, J. Appl. Phys. 47, 3648 (1976).

    Article  ADS  Google Scholar 

  13. A. M. Glezer, B. V. Molotilov, and O. L. Utevskaya, Fiz. Met. Metalloved. 58(5), 991 (1984).

    Google Scholar 

  14. Y. C. Niu, X. F. Bian, and W. M. Wang, J. Non-Cryst. Solids 341, 40 (2004).

    Article  ADS  Google Scholar 

  15. P. Murali and U. Ramamurty, Acta Mater. 53, 1467 (2005).

    Article  Google Scholar 

  16. A. M. Glezer, I. E. Permyakova, V. E. Gromov, and V. V. Kovalenko, Mechanical Behavior of Amorphous Alloys (Siberian State Industrial University, Novokuznetsk, 2006) [in Russian].

    Google Scholar 

  17. A. L. Greer, in Rapidly Solidified Alloys, Ed. by H. H. Liebermann (Marcel Decker, New York, 1993), p. 269.

  18. J. Tan, Y. Zhang, B. A. Sun, M. Stoica, C. L. Li, K. K. Song, U. Kuhn, F. S. Pan, and J. Eckert, Appl. Phys. Lett. 98, 151906 (2011).

    Article  ADS  Google Scholar 

  19. J. J. Lewandowski, W. H. Wang, and A. L. Greer, Philos. Mag. Lett. 85(2), 77 (2005).

    Article  ADS  Google Scholar 

  20. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  21. M. Kusy, P. Riello, and L. Battezzati, Acta Mater. 52, 5031 (2004).

    Article  Google Scholar 

  22. J. O. Wang, H. W. Zhang, X. J. Gu, K. Lu, F. Sommer, and E. J. Mittemeijer, Mater. Sci. Eng., A 375–377, 980 (2004).

    Article  Google Scholar 

  23. Y. Zhang and A. L. Greer, J. Alloys Compd. 434–435, 2 (2007).

    Article  Google Scholar 

  24. Smithells Metals Reference Book Ed. V. F. Gale and T. C. Totemeir (Butterworth-Heinemann, Oxford, 2004).

    Google Scholar 

  25. http://www.webelements.com.

  26. H. S. Chen, Mater Sci. Eng. 26, 79 (1976).

    Article  Google Scholar 

  27. J. Latuch, A. Kokoszkiewicz, and H. Matyja, Mater. Sci. Eng., A 226–228, 809 (1997).

    Article  Google Scholar 

  28. A. R. Yavari, A. L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W. J. Botta, G. Vaughan, M. D. Michiel, and A. Kvick, Acta Mater. 53, 1611 (2005).

    Article  Google Scholar 

  29. G. Abrosimova, A. Aronin, O. Barkalov, D. Matveev, O. Rybchenko, V. Maslov, and V. Tkach, Phys. Solid State 53(2), 229 (2011).

    Article  ADS  Google Scholar 

  30. V. I. Betekhtin, A. M. Glezer, A. G. Kadomtsev, and A. Yu. Kipyatkova, Phys. Solid State 40(1), 74 (1998).

    Article  ADS  Google Scholar 

  31. L. Y. Chen, A. D. Setyawan, H. Kato, A. Inoue, G.Q. Zhang, J. Saida, X. D. Wang, Q. P. Cao, and J. Z. Jiang, Scr. Mater. 59, 43 (2008).

    Article  Google Scholar 

  32. C. Nagel, K. Ratzke, E. Schmidtke, J. Wolff, U. Geyer, and F. Faupel, Phys. Rev. B: Condens. Matter 57(17), 10224 (1998).

    Article  ADS  Google Scholar 

  33. R. Gerling, F. P. Schimansky, and R. Wagner, Acta Metall. 36(3), 575 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Rassolov.

Additional information

Original Russian Text © E.A. Sviridova, V.V. Maksimov, S.G. Rassolov, V.K. Nosenko, V.I. Tkach, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 7, pp. 1304–1311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sviridova, E.A., Maksimov, V.V., Rassolov, S.G. et al. Influence of the chemical composition of Al-based amorphous alloys on thermally induced embrittlement. Phys. Solid State 56, 1355–1362 (2014). https://doi.org/10.1134/S1063783414070312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414070312

Keywords

Navigation