Skip to main content
Log in

Electronic band structure, optical absorption, and photocatalytic activity of iron-doped anatase

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Quasi-one-dimensional solid solutions of the composition Ti1 − x Fe x O2 − x/2 (0.005 ≤ x ≤ 0.050) with the anatase-type structure and extended aggregates have been prepared by the precursor method. The absorption spectra of the solid solutions have been investigated in the ultraviolet and visible regions, and the photocatalytic activity in the oxidation reaction of hydroquinone in water has been estimated. It has been found that the synthesized solid solutions serve as photocatalysts only under ultraviolet irradiation, and their photoactivity increases with an increase in the dopant concentration. The first-principles calculations of the electronic band structure and optical absorption in iron-doped anatase and rutile have been performed using the pseudopotential method LSDA + U (with the VASP software package). The on-site exchange-correlation parameters have been calibrated in the calculations of the electronic band structure of hematite α-Fe2O3 and ilmenite FeTiO3. It has been shown that, despite the appearance of impurity states within the band gap of anatase and rutile, doping with iron does not cause substantial absorption in the visible region, which correlates with the increase in photocatalytic activity only under ultraviolet irradiation. The most probable cause of the experimentally observed absorption in the visible region is the presence of finely dispersed hematite impurities in the obtained samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Soboleva, A. A. Nosovich, and V. V. Goncharuk, Khim. Tekhnol. Vody 29, 125 (2007).

    Google Scholar 

  2. A. Zaleska, Recent Pat. Eng. 2, 157 (2008).

    Article  Google Scholar 

  3. S. M. Gupta and M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011).

    Article  Google Scholar 

  4. M. A. Henderson, Surf. Sci. Rep. 66, 185 (2011).

    Article  ADS  Google Scholar 

  5. S. G. Kumar and L. G. Devi, J. Phys. Chem. A 115, 13211 (2011).

    Article  Google Scholar 

  6. K.-C. Chena, Y.-H. Wanga, and Y.-C. Lua, Catal. Today 175, 276 (2011).

    Article  Google Scholar 

  7. H. Dimitroula, V. M. Daskalakia, Z. Frontistis, D. I. Kondarides, P. Panagiotopoulou, N. P. Xekoukoulotakis, and D. Mantzavinos, Appl. Catal., B 117, 283 (2012).

    Article  Google Scholar 

  8. Y. Izumi, Coord. Chem. Rev. 257, 171 (2013).

    Article  Google Scholar 

  9. H. Sun, S. Wang, H. M. Ang, M. O. Tade, and Q. Li, Chem. Eng. J. 162, 437 (2010).

    Article  Google Scholar 

  10. D. Wang, R. Yu, Y. Chen, N. Kumada, N. Kinomura, and M. Takano, Solid State Ionics 172, 101 (2004).

    Article  Google Scholar 

  11. V. N. Krasil’nikov, A. P. Shtin, O. I. Gyrdasova, E. V. Polyakov, and G. P. Shveikin, Russ. J. Inorg. Chem. 53(7), 1065 (2008).

    Article  Google Scholar 

  12. V. N. Krasil’nikov, A. P. Shtin, O. I. Gyrdasova, E. V. Polyakov, L. Yu. Buldakova, M. Yu. Yanchenko, V. M. Zainullina, and V. P. Zhukov, Russ. J. Inorg. Chem. 55(8), 1184 (2010).

    Article  Google Scholar 

  13. V. M. Zainullina, V. P. Zhukov, V. N. Krasil’nikov, E. V. Polyakov, L. Yu. Buldakova, and M. Yu. Yanchenko, Phys. Solid State 52(2), 271 (2010).

    Article  ADS  Google Scholar 

  14. I. V. Baklanova, V. N. Krasil’nikov, L. A. Perelyaeva, and O. I. Gyrdasova, Teor. Eksp. Khim. 47, 208 (2011).

    Google Scholar 

  15. V. N. Krasil’nikov, A. P. Shtin, O. I. Gyrdasova, L. A. Perelyaeva, I. V. Baklanova, and V. G. Bamburov, Dokl. Chem. 437(2), 112 (2011).

    Article  Google Scholar 

  16. I. V. Baklanova, V. N. Krasil’nikov, V. P. Zhukov, I. R. Shein, L. A. Perelyaeva, and O. I. Gyrdasova, in Proceedings of the 14th International Symposium “Order, Disorder, and Properties of Oxides” (ODPO-14), Loo, Krasnodar krai, September 14–19, 2011, Vol. 1, p. 167.

  17. Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, J. Lumin. 118, 301 (2006).

    Article  Google Scholar 

  18. Q. G. Zeng, Z. J. Ding, and Z. M. Zhang, J. Mater. Sci. 42, 3778 (2007).

    Article  ADS  Google Scholar 

  19. P. Yang, C. Lu, N. Hua, and Y. Du, Mater. Lett. 57, 794 (2002).

    Article  Google Scholar 

  20. C. Wang, C. Bottcher, D. W. Bahneman, and J. K. Dohrmann, J. Mater. Chem. 13, 2322 (2003).

    Article  Google Scholar 

  21. N. Wethcakum, P. Piirakitikulr, K. Caing, and S. Phanichphant, in Proceedings of the 2nd IEEE International Nanoelectronics Conference (INEC), Shanghai, China, March 24–27, 2008, p. 836.

  22. Z. Li, W. Shen, W. He, and X. Zu, J. Hazard. Mater. 155, 590 (2008).

    Article  Google Scholar 

  23. C. Fabrega, T. Andreu, A. Cabot, and J. R. Morante, J. Photochem. Photobiol., A 210, 170 (2010).

    Article  Google Scholar 

  24. I. Ganesh, P. P. Kumar, A. K. Gupta, P. S. C. Sekhar, K. Radha, G. Padmanbham, and G. Sundararajan, Process. Appl. Ceram. 6, 21 (2012).

    Article  Google Scholar 

  25. S. Nahar, K. Hasegawa, S. Kagaya, and S. Kuroda, Sci. Technol. Adv. Mater. 8, 286 (2007).

    Article  Google Scholar 

  26. J. G. Carriazo, M. Moreno-Forero, R. A. Molina, and S. Moreno, Appl. Clay Sci. 50, 401 (2010).

    Article  Google Scholar 

  27. P. Sathishkumar, S. Anandan, P. Maruthamuthu, T. Swaminathan, M. Zhou, and P. Ashokkumar, Colloids Surf., A 375, 231 (2011).

    Article  Google Scholar 

  28. P. Pongwan, B. Inceesungvorn, K. Wetchakun, S. Phanichphant, and N. Wetchakun, Eng. J. 16, 144 (2012).

    Article  Google Scholar 

  29. H.-C. Wu, S.-H. Li, and S.-W. Lin, Int. J. Photoenergy 2012, Article ID 823498 (2012).

  30. M. A. Ahmed, E. El-Katorri, and Z. H. Gharni, J. Alloys Compd. 533, 19 (2013).

    Article  Google Scholar 

  31. N. D. Abazovic, L. Mirenghi, I. A. Jankovic, N. Bibic, B. Sojic, M. Abramovic, and M. I. Comor, Nanoscale Res. Lett. 4, 518 (2009).

    Article  ADS  Google Scholar 

  32. V. N. Krasil’nikov, O. I. Gyrdasova, I. V. Baklanova, L. Yu. Buldakova, M. Yu. Yanchenko, R. F. Samigullina, and O. V. Koryakova, Russ. J. Inorg. Chem. 58(2), 120 (2013).

    Article  Google Scholar 

  33. S. Zhu, T. Shi, W. Liu, S. Wie, Y. Xie, C. Fan, and Y. Li, Physica B (Amsterdam) 396, 177 (2007).

    Article  ADS  Google Scholar 

  34. V. Zhukov, I. Shein, and V. Zainullina, J. Alloys Compd. 548, 46 (2013).

    Article  Google Scholar 

  35. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B: Condens. Matter 57(3), 1505 (1998).

    Article  ADS  Google Scholar 

  36. R. Grau-Crespo, A. Y. Al-Baitai, I. Saadoune, N. H. D. Leeuw, J. Phys.: Condens. Matter. 22, 255–401 (2010).

    Article  Google Scholar 

  37. X. Wang, J.-G. Li, H. Kamiyama, and T. Ishigaki, Thin Solid Films 506–507, 278 (2006).

    Article  Google Scholar 

  38. Z. Ambrus, N. Balazs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, and K. Mogyorosi, Appl. Catal., B 81, 27 (2008).

    Article  Google Scholar 

  39. M. Abdulla-Al-Mamun, Y. Kusumoto, and M. S. Islam, J. Mater. Chem. 22, 5460 (2012).

    Article  Google Scholar 

  40. H. S. Nabi and R. Pentchevaa, J. Appl. Phys. 106, 073912 (2009).

    Article  ADS  Google Scholar 

  41. M. Gajdos, K. Hummer, G. Kresse, J. Furthmiiller, and F. Bechstedt, Phys. Rev. B: Condens. Matter 73, 045112 (2006).

    Article  ADS  Google Scholar 

  42. J. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972; Fizmatlit, Moscow, 1972).

    Book  Google Scholar 

  43. L. Xiao, J. Zhang, Y. Cong, B. Tian, F. Chen, and M. Anpo, Catal. Lett. 111, 207 (2006).

    Article  Google Scholar 

  44. J. Zhu, W. Zheng, B. He, J. Zhang, and M. Anpo, J. Mol. Catal. A: Chem. 216, 35 (2004).

    Article  Google Scholar 

  45. M. Zhoua, J. Yu, and B. Cheng, J. Hazard. Mater. 137, 1838 (2006).

    Article  Google Scholar 

  46. W.-C. Hung, S.-H. Fu, J.-J. Tseng, H. Chu, and T.-H. Ko, Chemosphere 66, 2142 (2007).

    Article  Google Scholar 

  47. L. Marusak, R. Messier, and W. White, J. Phys. Chem. Solids 41, 981 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Krasil’nikov.

Additional information

Original Russian Text © V.N. Krasil’nikov, V.P. Zhukov, L.A. Perelyaeva, I.V. Baklanova, I.R. Shein, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 9, pp. 1788–1796.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasil’nikov, V.N., Zhukov, V.P., Perelyaeva, L.A. et al. Electronic band structure, optical absorption, and photocatalytic activity of iron-doped anatase. Phys. Solid State 55, 1903–1912 (2013). https://doi.org/10.1134/S1063783413090199

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413090199

Keywords

Navigation