Skip to main content
Log in

A dislocation kinetic model of the formation and propagation of intense shock waves in crystals

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Analytical expressions for the front of a shock plastic wave and the plastic relaxation region behind the front have been obtained and a relation of the wave parameters to the pressure in the wave has been determined in the framework of the dislocation kinetic approach based on kinetic relationships and equations for the density of dislocations. Within this approach, the physical mechanism of the origin and the universality of the Swegle-Grady empirical relationship for crystals in the form of a power-law dependence of the plastic strain rate \(\dot \varepsilon \) on the pressure in the wave P, that is, \(\dot \varepsilon \)P 4, have been discussed. The principal contribution to this dependence comes from the power-law (cubic) dependence of the density of dislocations generated in the wave front on the pressure. The universality of the Swegle-Grady relationship is based on the invariance of the dissipative action A. An explicit expression for the dissipative action has been derived: A = SBV 0/3β. As follows from this expression, the dissipative action is determined by fundamental parameters for shock wave loading of crystals, such as the dislocation viscous drag coefficient B and the adiabaticity factor S (here, V 0 is the specific volume and β is a coefficient of the order of 10−3–10−2). In light of the revealed circumstances, such phenomenological notions as the Hugoniot elastic limit and the elastic precursor have been critically examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Meyers and C. T. Aimon, Prog. Mater. Sci. 28, 1 (1983).

    Article  Google Scholar 

  2. R. W. Armstrong and S. M. Walley, Int. Mater. Rev. 53, 105 (2008).

    Article  Google Scholar 

  3. M. A. Meyers, H. Jarmakani, E. M. Bringa, and B. A. Remington, in Dislocation in Solids, Ed. by J. P. Hirth and L. Kubin (Elsevier, Amsterdam, 2009), Vol. 15, Chap. 89, pp. 96–197.

  4. G. I. Kanel’, I. E. Fortov, and S. V. Razorenov, Phys.—Usp. 50(8), 771 (2007).

    Article  ADS  Google Scholar 

  5. L. E. Murr, Scr. Metall. 12, 201 (1978).

    Article  Google Scholar 

  6. M. A. Meyers, F. Gregory, B. K. Kad, M. S. Schneider, D. H. Kalantar, B. A. Remington, G. Ravichandran, T. Boehly, and J. S. Wark, Acta Mater. 51, 1211 (2003).

    Article  Google Scholar 

  7. M. S. Schneider, B. K. Kad, F. Gregory, D. H. Kalantar, B. A. Remington, and M. A. Meyers, Metall. Mater. Trans. A 35, 2633 (2004).

    Article  Google Scholar 

  8. F. R. N. Nabarro, Z. S. Basinski and D. B. Holt, The Plasticity of Pure Single Crystals (Adv. Phys. 13, 192 (1964); Metallurgiya, Moscow, 1967).

    Google Scholar 

  9. Z. P. Luo, H. W. Zhang, N. Hansen, and K. Lu, Acta Mater. 60, 1322 (2012).

    Article  Google Scholar 

  10. J. N. Johnson and L. M. Barker, J. Appl. Phys. 40, 4321 (1969).

    Article  ADS  Google Scholar 

  11. F. J. Zerilli and R. W. Armstrong, J. Appl. Phys. 61, 1816 (1987).

    Article  ADS  Google Scholar 

  12. P. S. Follansbee and U. F. Kocks, Acta Mater. 36, 81 (1988).

    Article  Google Scholar 

  13. M. F. Horstemeyer, M. I. Baskes, and S. J. Plimpton, Acta Mater. 49, 4363 (2001).

    Article  Google Scholar 

  14. J. Weertman and J. R. Weertman, in Dislocations in Solids, Ed. by F. R. N. Nabarro (North-Holland, Amsterdam, 1980), Vol. 3, pp. 1–60.

  15. V. S. Krasnikov, A. E. Mayer, and A. P. Yalovets, Int. J. Plast. 27, 1294 (2011).

    Article  MATH  Google Scholar 

  16. B. L. Holian, Phys. Rev. A: At., Mol., Opt. Phys. 37, 2562 (1988).

    Article  ADS  Google Scholar 

  17. D. Tanguy, M. Mareschal, P. S. Lomdahl, T. C. Germann, B. L. Holian, and R. Ravelo, Phys. Rev. B: Condens. Matter 68, 144111 (2003).

    Article  ADS  Google Scholar 

  18. Y. Liao, Ch. Ye, H. Gao, B. J. Kim, S. Suslov, and E. A. Stach, J. Appl. Phys. 110, 023518 (2011).

    Article  ADS  Google Scholar 

  19. M. A. Shehadeh, H. M. Zbib, and T. Diaz De La Rubia, Philos. Mag. 85, 1667 (2005).

    Article  ADS  Google Scholar 

  20. M. A. Shehadeh, E. M. Bringa, H. M. Zbib, J. M. McNaney, and B. A. Remington, Appl. Phys. Lett. 89, 171918 (2006).

    Article  ADS  Google Scholar 

  21. E. M. Bringa, K. Rosolankova, R. E. Rudd, B. A. Remington, J. S. Wark, M. Duchaineau, D. H. Kalantar, J. Hawreliak, and J. Belak, Nat. Mater. 5, 805 (2006).

    Article  ADS  Google Scholar 

  22. G. A. Malygin, Phys.—Usp. 42(9), 917 (1999).

    Article  ADS  Google Scholar 

  23. U. F. Kocks and H. Mecking, Prog. Mater. Sci. 48, 171 (2003).

    Article  Google Scholar 

  24. J. W. Swegle and D. E. Grady, J. Appl. Phys. 58, 692 (1985).

    Article  ADS  Google Scholar 

  25. D. E. Grady, J. Appl. Phys. 107, 013506 (2010).

    Article  ADS  Google Scholar 

  26. G. A. Malygin, S. L. Ogarkov, and A. V. Andriyash, Phys. Solid State 55 (2013) (in press).

  27. C. S. Smith, Trans. Am. Inst. Min., Metall. Pet. Eng. 212, 574 (1858).

    Google Scholar 

  28. M. A. Meyers, Scr. Metall. 12, 21 (1978).

    Article  Google Scholar 

  29. D. E. Grady, J. Geophys. Res. 85, 913 (1980).

    Article  ADS  Google Scholar 

  30. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, Phys. Rev. Lett. 107(14), 144302 (2011).

    Article  ADS  Google Scholar 

  31. G. V. Garkushin, G. I. Kanel’, and S. V. Razorenov, Phys. Solid State 54(5), 1079 (2012).

    Article  ADS  Google Scholar 

  32. L. E. Popov, V. S. Kobytev, and T. A. Kovalevskaya, Plastic Deformation of Alloys (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  33. G. A. Malygin, Fiz. Met. Metalloved. 67, 380 (1989).

    Google Scholar 

  34. G. A. Malygin, Phys. Solid State 37(1), 1 (1995).

    ADS  Google Scholar 

  35. G. A. Malygin, Sov. Phys. Solid State 29(7), 1189 (1987).

    Google Scholar 

  36. A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Mathematical Physics Equations (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Original Russian Text © G.A. Malygin, S.L. Ogarkov, A.V. Andriyash, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 4, pp. 721–728.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malygin, G.A., Ogarkov, S.L. & Andriyash, A.V. A dislocation kinetic model of the formation and propagation of intense shock waves in crystals. Phys. Solid State 55, 787–795 (2013). https://doi.org/10.1134/S1063783413040203

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413040203

Keywords

Navigation