Skip to main content
Log in

On the power-law pressure dependence of the plastic strain rate of crystals under intense shock wave loading

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The plastic deformation of metallic crystals under intense shock wave loading has been theoretically investigated. It has been experimentally found that the plastic strain rate \(\dot \varepsilon \) and the pressure in the wave P are related by the empirical expression \(\dot \varepsilon \)P 4 (the Swegle-Grady law). The performed dislocation-kinetic analysis of the mechanism of the origin of this relationship has revealed that its power-law character is determined by the power-law pressure dependence of the density of geometrically necessary dislocations generated at the shock wave front ρ ∼ P 3. In combination with the rate of viscous motion of dislocations, which varies linearly with pressure (uP), this leads to the experimentally observed relationship \(\dot \varepsilon \)P 4 for a wide variety of materials with different types of crystal lattices in accordance with the Orowan relationship for the plastic strain rate \(\dot \varepsilon \) = bρu (where b is the Burgers vector). In the framework of the unified dislocation-kinetic approach, it has been theoretically demonstrated that the dependence of the pressure (flow stress) on the plastic strain rate over a wide range from 10−4 to 1010 s−1 reflects three successively developing processes: the thermally activated motion of dislocations, the viscous drag of dislocations, and the generation of geometrically necessary dislocations at the shock wave front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Swegle and D. E. Grady, J. Appl. Phys. 58, 692 (1985).

    Article  ADS  Google Scholar 

  2. D. E. Grady, J. Appl. Phys. 107(1), 013506 (2010).

    Article  ADS  Google Scholar 

  3. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, J. Appl. Phys. 90, 136 (2001).

    Article  ADS  Google Scholar 

  4. G. I. Kanel’, I. E. Fortov, and S. V. Razorenov, Phys.—Usp. 50(8), 771 (2007).

    Article  ADS  Google Scholar 

  5. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, Phys. Rev. Lett. 107, 144302 (2011).

    Article  ADS  Google Scholar 

  6. P. S. Follansbee and U. F. Kocks, Acta Mater. 36, 81 (1988).

    Article  Google Scholar 

  7. R. W. Armstrong, W. Arnold, and F. J. Zerilli, Metall. Mater. Trans. A 38, 2605 (2007).

    Article  Google Scholar 

  8. R. W. Armstrong, W. Arnold, and F. J. Zerilli, J. Appl. Phys. 105(1), 023511 (2009).

    Google Scholar 

  9. R. W. Armstrong and F. J. Zerilli, J. Phys. D: Appl. Phys. 43, 49002 (2010).

    Article  Google Scholar 

  10. R. A. Austin and D. L. McDowell, Int. J. Plast. 32/33, 134 (2012).

    Article  Google Scholar 

  11. C. S. Smith, Trans. Metall. Soc. AIME 212, 574 (1958).

    Google Scholar 

  12. M. A. Meyers, Scr. Metall. 12, 21 (1978).

    Article  Google Scholar 

  13. M. A. Meyers, F. Gregory, B. K. Kad, M. S. Schneider, D. H. Kalantar, B. A. Remington, G. Ravichandran, T. Boehly, and J. S. Wark, Acta Mater. 51, 1211 (2003).

    Article  Google Scholar 

  14. L. E. Murr, Scr. Metall. 12, 201 (1978).

    Article  Google Scholar 

  15. V. I. Al’shits and V. L. Indenbom, Sov. Phys.—Usp. 18(1), 1 (1975).

    Article  ADS  Google Scholar 

  16. A. M. Kosevich, Sov. Phys.—Usp. 7, 837 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. I. Musienko and L. I. Manevich, Phys.—Usp. 47(8), 797 (2004).

    Article  ADS  Google Scholar 

  18. M. F. Horstemeyer, M. I. Baskes, and S. J. Plimton, Acta Mater. 49, 4363 (2001).

    Article  Google Scholar 

  19. V. S. Krasnikov, F. Yu. Kuksin, A. E. Mayer, and A. V. Yanilkin, Phys. Solid State 52(7), 1386 (2010).

    Article  ADS  Google Scholar 

  20. V. S. Krasnikov, A. E. Mayer, and A. P. Yalovets, Int. J. Plast. 27, 1294 (2011).

    Article  MATH  Google Scholar 

  21. A. E. Maier and A. E. Dudorov, Vestn. Chelyab. Gos. Univ.: Fiz. 39(12), 48 (2011).

    Google Scholar 

  22. W. Tong and S. Huang, J. Mech. Phys. Solids 40, 1251 (1992).

    Article  ADS  Google Scholar 

  23. P. S. Follansbee, U. F. Kocks, and G. Regazzoni, J. Phys., Colloq. 46, 25 (1985).

    Article  Google Scholar 

  24. R. Berner and H. Kronmüller, Plastische Verformung von Einkristallen (Springer-Verlag, Berlin, 1965; Mir, Moscow, 1969) [in German and in Russian].

    Google Scholar 

  25. G. V. Garkushin, G. I. Kanel’, and S. V. Razorenov, Phys. Solid State 54(5), 1079 (2012).

    Article  ADS  Google Scholar 

  26. S. V. Razorenov, G. I. Kanel’, G. V. Garkushin, and O.N. Ignatova, Phys. Solid State 54(4), 790 (2012).

    Article  ADS  Google Scholar 

  27. F. Ya. Uchaev, R. I. Il’kaev, V. T. Punin, S. A. Novikov, L. A. Platonov, and N. I. Sel’chenkova, Vopr. At. Nauki Tekh.: Materialoved. Novye Mater., No. 1, 246 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Original Russian Text © G.A. Malygin, S.L. Ogarkov, A.V. Andriyash, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 4, pp. 715–720.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malygin, G.A., Ogarkov, S.L. & Andriyash, A.V. On the power-law pressure dependence of the plastic strain rate of crystals under intense shock wave loading. Phys. Solid State 55, 780–786 (2013). https://doi.org/10.1134/S1063783413040197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413040197

Keywords

Navigation