Skip to main content
Log in

Symmetry of quasicrystals

  • Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The definition of an aperiodic crystal (quasicrystal) as a solid that is characterized by the forbidden symmetry suggests the existence of an unsolved problem, because, in a mutually exclusive manner, it appeals to the fundamental theorem of classical crystallography. Using the Penrose tiling as an example, we have investigated the symmetry properties of aperiodic tilings for the purpose to establish the allowed symmetry groups of quasicrystals. The filling of the Euclidean space according to an aperiodic law is considered as the action of an infinite number of group elements on a fundamental domain in the non-Euclidean space. It is concluded that all locally equivalent tilings have a common “parent” structure and, consequently, the same symmetry group. An idealized object, namely, an infinitely refined tiling, is introduced. It is shown that the symmetry operations of this object are operations of the similarity (rotational homothety). A positive answer is given to the question about a possible composition of operations of the similarity with different singular points. It is demonstrated that the transformations of orientation-preserving aperiodic crystals are isomorphic to a discrete subgroup of the Möbius group PSL(2, ℂ); i.e., they can be realized as discrete subgroups of the full group of motions in the Lobachevsky space. The problem of classification of the allowed types of aperiodic tilings is reduced to the procedure of enumeration of the aforementioned discrete subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53(20), 1951 (1984).

    Article  ADS  Google Scholar 

  2. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  3. Quasicrystals, Ed. by T. Fujiwara and Y. Ishii (Elsevier, Amsterdam, 2008).

    Google Scholar 

  4. W. Steurer and S. Deloudi, Crystallography of Quasicrystals: Concepts, Methods, and Structures (Springer-Verlag, Berlin, 2009).

    Google Scholar 

  5. M. Senechal, Not. Am. Math. Soc. 53(8), 886 (2006).

    MathSciNet  MATH  Google Scholar 

  6. R. Lifshitz, Found. Phys. 33(12), 1703 (2003).

    Article  MathSciNet  Google Scholar 

  7. D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, Rev. Mod. Phys. 63, 699 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S. Lidin, and B. W. Ninham, The Language of Shape: The Role of Curvature in Condensed Matter Physics, Chemistry, and Biology (Elsevier, Amsterdam, 1997).

    Google Scholar 

  9. E. Abe, Y. Yan, and S. J. R. Pennycook, Nat. Mater. 3(11), 759 (2004).

    Article  ADS  Google Scholar 

  10. V. E. Dmitrienko and V. A. Chizhikov, Crystallogr. Rep. 51(4), 552 (2006).

    Article  ADS  Google Scholar 

  11. E. A. Lord, A. L. Mackay, and S. Ranganathan, New Geometries for New Materials (Cambridge University Press, Cambridge, 2006).

    MATH  Google Scholar 

  12. V. Ya. Shevchenko, A. E. Madison, and A. L. Mackay, Acta Crystallogr., Sect. A: Found. Crystallogr. 63(2), 172 (2007).

    Article  ADS  Google Scholar 

  13. F. Klein, in On the Fundamentals of Geometry: A Collection of Classical Works on Lobachevsky’s Geometry and Development of Its Ideas, Ed by A. P. Norden (GITTL, Moscow, 1956), p. 399 [in Russian].

  14. D. Levine and P. J. Steinhardt, Phys. Rev. B: Condens. Matter 34(2), 596 (1986).

    Article  ADS  Google Scholar 

  15. J. E. S. Socolar and P. J. Steinhardt, Phys. Rev. B: Condens. Matter 34(2), 617 (1986).

    Article  ADS  Google Scholar 

  16. H. C. Jeong and P. J. Steinhardt, Phys. Rev. B: Condens. Matter 55(6), 3520 (1997).

    Article  ADS  Google Scholar 

  17. I. I. Privalov, Introduction to the Theory of Functions of Complex Variable (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  18. A. L. Mackay, J. Mol. Struct. (THEOCHEM) 336(2/3), 293 (1995).

    Article  Google Scholar 

  19. Modern Crystallography, Vols. 1–4, Ed. by B. K. Vainshtein, Vol. 1: Fundamentals of Crystals: Symmetry and Methods of Structural Crystallography (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1994).

    Google Scholar 

  20. D. Mumford, C. Series, and D. Wright, Indra’s Pearls: The Vision of Felix Klein (Cambridge University Press, Cambridge, 2002).

    MATH  Google Scholar 

  21. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications, Vol. 2: The Geometry and Topology of Manifolds (Springer-Verlag, Berlin, 1985; Editorial URSS, Moscow, 2001).

    Google Scholar 

  22. J. F. Sadoc and N. Rivier, Philos. Mag. B 55(5), 537 (1987).

    Article  Google Scholar 

  23. M. Kléman, Adv. Phys. 38(6), 605 (1989).

    Article  ADS  Google Scholar 

  24. J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space: Harmonic Analysis and Number Theory (Springer-Verlag, Berlin, 1998; MTsNMO, Moscow, 2003).

    Book  MATH  Google Scholar 

  25. B. A. Dolgikh, Fundam. Prikl. Mat. 13(2), 117 (2007).

    Google Scholar 

  26. V. A. Artamonov and S. Sanches, Sib. Mat. Zh. 52(6), 1221 (2011).

    Google Scholar 

  27. D. Hilbert, Bull. Am. Math. Soc. 8(10), 437 (1902).

    Article  MathSciNet  MATH  Google Scholar 

  28. Hilbert’s Problems, Ed. by P. S. Aleksandrov (Isfara, Chelyabinsk, 2000) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Madison.

Additional information

Original Russian Text © A.E. Madison, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 4, pp. 784–796.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madison, A.E. Symmetry of quasicrystals. Phys. Solid State 55, 855–867 (2013). https://doi.org/10.1134/S1063783413040185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413040185

Keywords

Navigation