Skip to main content
Log in

Self-similarity and self-inversion of quasicrystals

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The discovery of quasicrystals played a revolutionary role in the condensed matter science and forced to renounce the dogma of the classical crystallography that the regular filling of the space by identical blocks is reduced solely to the Fedorov space groups. It is shown that aperiodic crystals, apart from the similarity, exhibit the self-inversion property. In a broadened sense, the self-inversion implies the possible composition of the inversion with translations, rotations, and homothety, whereas pure reflection by itself in a circle can be absent as an independent symmetry element. It is demonstrated that the symmetry of aperiodic tilings is described by Schottky groups (which belong to a particular type of Kleinian groups generated by the linear fractional Möbius transformations); in the theory of aperiodic crystals, the Schottky groups play the same role that the Fedorov groups play in the theory of crystal lattices. The local matching rules for the Penrose fractal tiling are derived, the problem of choice of the fundamental region of the group of motions of a quasicrystal is discussed, and the relation between the symmetry of aperiodic tilings and the symmetry of constructive fractals is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Ya. Shevchenko, G. V. Zhizhin, and A. L. Mackay, Russ. Chem. Bull. 62(2), 265 (2013).

    Article  Google Scholar 

  2. W. Steurer and S. Deloudi, Crystallography of Quasicrystals: Concepts, Methods, and Structures (SpringerVerlag, Berlin, 2009).

    Google Scholar 

  3. R. Lifshitz, Isr. J. Chem. 51(11-12), 1156 (2011).

    Article  Google Scholar 

  4. I. Hargittai, J. Mol. Struct. 976, 81 (2010).

    Article  ADS  Google Scholar 

  5. Yu. Kh. Vekilov and M. A. Chernikov, Phys.-Usp. 53(6), 537 (2010).

    Article  ADS  Google Scholar 

  6. A. E. Madison, Phys. Solid State 55(4), 855 (2013).

    Article  ADS  Google Scholar 

  7. N. G. de Bruijn, Proc. K. Ned. Akad. Wet., Ser. A: Math. Sci. 84, 39 (1981).

    Google Scholar 

  8. L. S. Levitov, Sov. Phys. JETP 66(5), 1046 (1987).

    MathSciNet  Google Scholar 

  9. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  10. C. Bandt and P. Gummelt, Aequationes Math. 53, 295 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  11. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, San Francisco, United States, 1982; Institute of Computer Sciences, Moscow, 2002).

    MATH  Google Scholar 

  12. F. Gähler, J. Non-Cryst. Solids 153-154, 160 (1993).

    Article  ADS  Google Scholar 

  13. H.-Ch. Jeong and P. J. Steinhardt, Phys. Rev. B: Condens. Matter 55(6), 3520 (1997).

    Article  ADS  Google Scholar 

  14. E. A. Lord and S. Ranganathan, Acta Crystallogr., Sect. A: Found. Crystallogr. 57, 531 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Gummelt, Geom. Dedicata 62(1), 1 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  16. H. S. M. Coxeter, Introduction to Geometry (Wiley, New York, 1961; Nauka, Moscow, 1966).

    MATH  Google Scholar 

  17. D. Mumford, C. Series, and D. Wright, Indra’s Pearls: The Vision of Felix Klein (Cambridge University Press, Cambridge, 2002).

    Book  Google Scholar 

  18. Le Tu Quoc Thang, S. A. Piunikhin, and V. A. Sadov, Usp. Mat. Nauk 48(1), 41 (1993).

    MATH  Google Scholar 

  19. C. Goodman-Strauss, Ann. Math. 147(1), 181 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. E. S. Socolar and J. M. Taylor, Math. Intell. 34(1), 18 (2012).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Madison.

Additional information

Original Russian Text © A.E. Madison, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 8, pp. 1651–1661.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madison, A.E. Self-similarity and self-inversion of quasicrystals. Phys. Solid State 56, 1706–1716 (2014). https://doi.org/10.1134/S1063783414080162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414080162

Keywords

Navigation