Skip to main content
Log in

Electron transport, magnetic state, and type of holes in (La0.8Ca0.2)1 − y Mn1 − z O3 + δ

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical resistivity ρ and magnetization of La0.8Ca0.2MnO3.06, (La0.8Ca0.2)0.975MnO3.01, and La0.8Ca0.2Mn0.975O3.06 polycrystalline samples have been measured in magnetic fields 0 ≤ H ≤ 9 T at temperatures in the range 2 ≤ T ≤ 300 K. The results obtained for the first and second samples are typical of manganites with the colossal magnetoresistance effect: the electrical resistivity increases with a decrease in temperature to TT C and then sharply decreases. The composition of the third sample differs from the composition of the first sample by the content of Mn vacancies, which is ∼2.5% higher in the former case, and this difference leads to a very strong difference in the properties of the samples. First, the ferromagnetism in the third sample is almost completely suppressed and, at low temperatures (T ∼ 50–70 K), there occurs a transition to the state close to the cluster glass state. Second, the electrical resistivity of the third sample at low temperatures and H = 0 is four orders of magnitude higher than that of the first sample, even though the third sample contains a considerably higher concentration of holes. It has been shown that, for all three samples over the entire temperature range under investigation, the local activation energy E depends on the magnetic field. Of particular interest is the fact that the local activation energy E significantly decreases with increasing field in the paramagnetic region, which is not typical of conventional semiconductors. These specific features of the properties of the samples have been explained by assuming the hypothesis according to which holes in all three samples can be in the form of Mn4+, as well as in the form of O, and can transform into each other. It has been concluded that a decrease in the temperature T and an increase in the magnetic field H favor the formation of Mn4+ holes and result in a decrease in the values of ρ and E with the formation of the ferromagnetic order, whereas an increase in the content of vacancies in the Mn-sublattice favors the formation of O- holes and leads to an increase in the electrical resistivity ρ and the suppression of ferromagnetism in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  2. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  3. L. P. Gor’kov, Phys.-Usp. 41(6), 589 (1998).

    Article  Google Scholar 

  4. V. M. Loktev and Yu. G. Pogorelov, Low Temp. Phys. 26(3), 171 (2000).

    Article  ADS  Google Scholar 

  5. A. Chainani, M. Mathew, and D. D. Sarma, Phys. Rev. B: Condens. Matter 47, 15397 (1993).

    Article  ADS  Google Scholar 

  6. T. Saitoh, A. E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B: Condens. Matter 51, 13942 (1995).

    Article  ADS  Google Scholar 

  7. V. R. Galakhov, Solid State Phenom. 168–169, 453 (2011).

    Google Scholar 

  8. J. A. M. van Roosmalen, E. H. P. Cordfunke, R. B. Helmholdt, and H. W. Zandbergen, J. Solid State Chem. 110, 100 (1994).

    Article  ADS  Google Scholar 

  9. J. A. M. van Roosmalen and E. H. P. Cordfunke, J. Solid State Chem. 110, 106 (1994).

    Article  ADS  Google Scholar 

  10. J. A. M. van Roosmalen, P. van Vlaanderen, E. H. P. Cordfunke, W. L. IJdo, and D. J. W. IJdo, J. Solid State Chem. 114, 516 (1995).

    Article  Google Scholar 

  11. A. Arulraj, R. Mahesh, G. N. Subbanna, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao, J. Solid State Chem. 127, 87 (1996).

    Article  ADS  Google Scholar 

  12. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  13. P. W. Anderson and H. Hasegawa, Phys. Rev. B: Condens. Matter 100, 675 (1955).

    ADS  Google Scholar 

  14. C. Ritter, M. R. Ibarra, J. M. De Teresa, P. A. Algarabel, C. Marquina, J. Blasco, J. Garcia, S. Oseroff, and S.-W. Cheng, Phys. Rev. B: Condens. Matter 56, 8902 (1997).

    Article  ADS  Google Scholar 

  15. N. I. Solin, S. V. Naumov, T. I. Arbuzova, N. V. Kostromitina, M. V. Ivanchenko, A. A. Saranin, and N. M. Chebotaev, Phys. Solid State 50(10), 1908 (2008).

    Article  ADS  Google Scholar 

  16. N. I. Solin, S. V. Naumov, N. M. Chebotaev, and A. V. Korolev, Phys. Solid State 52(2), 289 (2010).

    Article  ADS  Google Scholar 

  17. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  ADS  Google Scholar 

  18. T. Okuda, Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. B: Condens. Matter 61, 8009 (2000).

    Article  ADS  Google Scholar 

  19. B. Dabrowski, R. Dybzinski, Z. Bukowski, O. Chmaissem, and J. D. Jorgensen, J. Solid State Chem. 146, 448 (1999).

    Article  ADS  Google Scholar 

  20. B. Dabrjwski, X. Xiong, Z. Bukowski, R. Dybzinski, P. W. Klamut, J. E. Siewenie, O. Chmaissem, J. Shaffer, C. W. Kimball, J. D. Jorgensen, and S. Short, Phys. Rev. B: Condens. Matter 60, 7006 (1999).

    Article  ADS  Google Scholar 

  21. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).

    Article  ADS  Google Scholar 

  22. N. G. Bebenin, R. I. Zainullina, N. S. Bannikova, V. V. Ustinov, and Ya. M. Mukovskii, Phys. Solid State 50(4), 691 (2008).

    Article  ADS  Google Scholar 

  23. N. G. Bebenin, R. I. Zainullina, N. S. Bannikova, and V. V. Ustinov, Phys. Rev. B: Condens. Matter 78, 064415 (2008).

    Article  ADS  Google Scholar 

  24. A. Maignan, C. Martin, F. Damay, B. Raveau, and J. Hejtmanek, Phys. Rev. B: Condens. Matter 58, 2758 (1998).

    Article  ADS  Google Scholar 

  25. L. Ghivelder, I. Abrego Castillo, M. A. Gusmao, J. A. Alonso, and L. F. Cohen, Phys. Rev. B: Condens. Matter 60, 12184 (1999).

    Article  ADS  Google Scholar 

  26. A. J. Mills, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).

    Article  ADS  Google Scholar 

  27. R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, T. V. Ramakrishnan, R. Mahesh, N. Rangavittal, and C. N. R. Rao, Phys. Rev. B: Condens. Matter 53, 3348 (1996).

    Article  ADS  Google Scholar 

  28. J. M. De Teresa, M. R. Ibarra, P. A. Algarabel, C. Ritter, C. Margulna, and Z. Arnold, Nature (London) 386, 256 (1997).

    Article  ADS  Google Scholar 

  29. C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, and J. J. Neumeier, Phys. Rev. Lett. 80, 853 (1998).

    Article  ADS  Google Scholar 

  30. L. P. Gor’kov and V. Z. Kresin, Phys. Rep. 400, 149 (2004).

    Article  ADS  Google Scholar 

  31. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B: Condens. Matter 51, 14103 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chebotaev.

Additional information

Original Russian Text © N.M. Chebotaev, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 4, pp. 688–696.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chebotaev, N.M. Electron transport, magnetic state, and type of holes in (La0.8Ca0.2)1 − y Mn1 − z O3 + δ . Phys. Solid State 55, 748–758 (2013). https://doi.org/10.1134/S1063783413040069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413040069

Keywords

Navigation