Skip to main content
Log in

Domain walls, magnetization, and magnetoelectric effect in bismuth ferrite films

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The specific features of the antiferromagnetic domain structure, magnetization, and polarization induced by an inhomogeneous micromagnetic distribution in films of bismuth ferrite multiferroics have been investigated. It has been shown that the magnetic domain structure correlates with the ferroelectric domain structure, and the character of the rotation of the antiferromagnetic vector depends on the type of ferroelectric domain walls. An asymmetry in the distribution of the antiferromagnetic vector has been observed for the cases of 109° and 71° ferroelectric domain walls. It has been demonstrated that there are differences in the distributions of the polarization and magnetization in bismuth ferrite films with ferroelectric domains separated by 109° and 71° walls. The basic mechanisms responsible for the magnetization in domain walls in multiferroics have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. Pyatakov, A. K. Zvezdin, L. E. Cross, and D. Viehland, Appl. Phys. Lett. 86, 032511 (2005).

    Article  ADS  Google Scholar 

  2. A. M. Kadomtseva, Yu. F. Popov, A. P. Pyatakov, G. P. Vorob’ev, A. K. Zvezdin, and D. Viehland, Phase Transitions 79, 1019 (2006).

    Article  Google Scholar 

  3. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).

    Article  ADS  Google Scholar 

  4. I. Sosnowska and A. K. Zvezdin, J. Magn. Magn. Mater. 140-144, 167 (1995).

    Article  ADS  Google Scholar 

  5. Yu. F. Popov, A. K. Zvezdin, G. P. Vorob’ev, A. M. Kadomtseva, V. A. Murashov, and D. N. Rakov, JETP Lett. 57(1), 69 (1993).

    ADS  Google Scholar 

  6. M. Tokunaga, M. Azuma, and Y. Shimakawa, J. Phys. Soc. Jpn. 79(6), 064713 (2010).

    Article  ADS  Google Scholar 

  7. F. Yan, M.-O. Lai, and L. Lu, J. Phys. Chem. C 114, 6994 (2010).

    Article  Google Scholar 

  8. Z. V. Gabbasova, M. D. Kuzmin, A. K. Zvezdin, I. S. Dubenko, V. A. Murashov, D. N. Rakov, and I. B. Krynetsky, Phys. Lett. A 158, 491 (1991).

    Article  ADS  Google Scholar 

  9. J. Privratska and V. Janovec, Ferroelectrics 204, 321 (1997).

    Article  Google Scholar 

  10. B. M. Tanygin, J. Magn. Magn. Mater. 323, 616 (2011).

    Article  ADS  Google Scholar 

  11. B. Houchmandzadeh, J. Lajzerowicz, and E. Salje, J. Phys.: Condens. Matter 3, 5163 (1991).

    Article  ADS  Google Scholar 

  12. M. Daraktchiev, G. Catalan, and J. Scott, Phys. Rev. B: Condens. Matter 81, 224118 (2010).

    Article  ADS  Google Scholar 

  13. A. Goltsev, R. Pisarev, T. Lottermoser, and M. Fiebig, Phys. Rev. Lett. 90, 177204 (2003).

    Article  ADS  Google Scholar 

  14. K. L. Livesey, Phys. Rev. B: Condens. Matter 82, 064408 (2010).

    Article  ADS  Google Scholar 

  15. T. Lottermoser and M. Fiebig, Phys. Rev. B: Condens. Matter 70, 220407(R) (2004).

    Article  ADS  Google Scholar 

  16. S. Venkatesan, Ch. Daumont, B.J. Kooi, B. Noheda, and J. Th. M. De Hosson, Phys. Rev. B: Condens. Matter 80, 214111 (2009).

    Article  ADS  Google Scholar 

  17. C. J. M. Daumont, D. Mannix, S. Venkatesan, G. Catalan, D. Rubi, B. J. Kooi. J. Th. M. De Hosson, and B. Noheda, J. Phys.: Condens. Mater. 21, 182001 (2009).

    Article  ADS  Google Scholar 

  18. Q. He, Y.-H. Chu, J. T. Heron, S. Y. Yang, W. I. Liang, C. Y. Kuo, H. J. Lin, P. Yu, C. W. Liang, R. J. Zeches, W. C. Kuo, J. Y. Juang, C. T. Chen, E. Arenholz, A. Scholl, and R. Ramesh, Nat. Commun. 2, 225 (2011).

    Article  Google Scholar 

  19. H. Schmid, J. Phys.: Condens. Matter. 20, 434201 (2008).

    Article  ADS  Google Scholar 

  20. H. Schmid, Ferroelectrics 221, 9 (1999).

    Article  Google Scholar 

  21. J. X. Zhang, Y. L. Li, S. Choudhury, L. Q. Chen, Y. H. Chu, F. Zavaliche, M. P. Cruz, R. Ramesh, and Q. X. Jia, J. Appl. Phys. 103, 094111 (2008).

    Article  ADS  Google Scholar 

  22. L. J. Li, Y. Yang, Y. C. Shu, and J. Y. Li, J. Mech. Phys. Solids 58, 1613 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. C. W. Hyang, L. Chen, J. Wang, Q. He, S. Y. Yang, Y. H. Chu, and R. Ramesh, Phys. Rev. B: Condens. Matter 80, 140101(R) (2009)

    ADS  Google Scholar 

  24. M. P. Cruz, Y. H. Chu, J. X. Zhang, P. L. Yang, F. Zavaliche, Q. He, P. Shafer, L. Q. Chen, and R. Ramesh, Phys. Rev. Lett. 99, 217601 (2007).

    Article  ADS  Google Scholar 

  25. S. K. Steiffer, C. B. Parker, A. E. Romanov, M. J. Lefevre, L. Zhao, J. S. Speck, W. Pompe, C. M. Foster, and G. R. Bai, J. Appl. Phys. 83, 2742 (1998).

    Article  ADS  Google Scholar 

  26. F. Zavaliche, S. Y. Yang, T. Zhao, Y. H. Chu, M. P. Cruz, C. B. Eom, and R. Ramesh, Phase Transitions 79, 991 (2006).

    Article  Google Scholar 

  27. L. W. Martin, Y.-H. Chu, M. B. Holcomb, M. Huijben, P. Y. S.-J. Han, D. Lee, S. X. Wang, and R. Ramesh, Nano Lett. 8, 2050 (2008).

    Article  ADS  Google Scholar 

  28. Z. V. Gareeva and A. K. Zvezdin, Phys. Solid State 52(8), 1714 (2010).

    Article  ADS  Google Scholar 

  29. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodrigues, A. Sholl, S. X. Wang, and R. Ramesh, Nat. Mater. 7, 478 (2008).

    Article  ADS  Google Scholar 

  30. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, Nat. Mater. 8, 229 (2009).

    Article  ADS  Google Scholar 

  31. G. Catalan and J. F. Scott, Adv. Mater. (Weinheim) 21, 2463 (2009).

    Article  Google Scholar 

  32. A. K. Zvezdin and A. P. Pyatakov, Phys.-Usp. 52(8), 845 (2009).

    Article  ADS  Google Scholar 

  33. V. G. Bar’yakhtar, V. A. L’vov, and D. A. Yablonskii, JETP Lett. 37(12), 673 (1983).

    ADS  Google Scholar 

  34. A. Sparavigna, A. Strigazzi, and A. Zvezdin, Phys. Rev. B: Condens. Matter 50, 2953 (1994).

    Article  ADS  Google Scholar 

  35. R. de Soussa and J. I. Moore, Phys. Rev. Lett. 102, 249701 (2009).

    Article  ADS  Google Scholar 

  36. A. K. Zvezdin and A. P. Pyatakov, Phys. Status Solidi B 246, 1956 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. Gareeva.

Additional information

Original Russian Text © Z.V. Gareeva, A.K. Zvezdin, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 5, pp. 1004–1011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gareeva, Z.V., Zvezdin, A.K. Domain walls, magnetization, and magnetoelectric effect in bismuth ferrite films. Phys. Solid State 54, 1070–1078 (2012). https://doi.org/10.1134/S1063783412050095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412050095

Keywords

Navigation