Skip to main content
Log in

Contribution of phonons to the line width of surface electronic states on Pd(111)

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on the results of calculations of the contributions from the electron-phonon interaction to the line width of the surface electronic states on Pd(111). The calculations have been performed both using an ab initio method based on the electron density functional theory and the linear response method in the pseudopotential representation with a mixed basis set and using a model that includes the description of the electronic structure of the surface by a one-dimensional model potential. The phonon contribution to the width of the lines has been analyzed for all the surface states under consideration. It has been demonstrated that the line width due to the electron-phonon interaction exhibits a weak anisotropy and that the character of changes in the line width with variations in the energy and the wave vector of the electron depends first of all on the particular surface energy band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kliewer, R. Berndt, E. V. Chulkov, V. M. Silkin, P. M. Echenique, and S. Crampin, Science (Washington) 288, 1399 (2000).

    Article  ADS  Google Scholar 

  2. P. M. Echenique, R. Berndt, E. V. Chulkov, Th. Fauster, A. Goldmann, and U. Höfer, Surf. Sci. Rep. 52, 219 (2004).

    Article  Google Scholar 

  3. J. Kröger, L. Limot, H. Jensen, R. Berndt, S. Crampin, and E. Pehlke, Prog. Surf. Sci. 80, 26 (2005).

    Article  ADS  Google Scholar 

  4. E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, Chem. Rev. (Washington) 106(4), 4160 (2006).

    Google Scholar 

  5. K. Watanabe, D. Menzel, N. Nilius, and H.-J. Freud, Chem. Rev. (Washington) 106, 4301 (2006).

    Google Scholar 

  6. P. Saalfrank, Chem. Rev. (Washington) 106, 41116 (2006).

    Google Scholar 

  7. R. Haight, Surf. Sci. Rep. 21, 275 (1995).

    Article  ADS  Google Scholar 

  8. W.-D. Schöne, Prog. Surf. Sci. 82, 161 (2007).

    Article  ADS  Google Scholar 

  9. M. Wolf, E. Knoesel, and T. Hertel, Phys. Rev. B: Condens. Matter 54, R5295 (1996).

    Article  ADS  Google Scholar 

  10. I. L. Shumay, U. Höfer, Ch. Reuss, U. Thomann, W. Wallauer, and Th. Fauster, Phys. Rev. B: Condens. Matter 58, 13974 (1998).

    Article  ADS  Google Scholar 

  11. S. Link, H. A. Dürr, G. Bihlmayer, S. Blügel, W. Eberhardt, E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Phys. Rev. B: Condens. Matter 63, 115420 (2001).

    Article  ADS  Google Scholar 

  12. R. Matzdorf, Surf. Sci. Rep. 30, 153 (1998).

    Article  ADS  Google Scholar 

  13. F. Theilmann, R. Matzdorf, G. Meister, and A. Goldmann, Phys. Rev. B: Condens. Matter 56, 3632 (1997).

    Article  ADS  Google Scholar 

  14. F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hüfner, Phys. Rev. B: Condens. Matter 63, 115415 (2001).

    Article  ADS  Google Scholar 

  15. I. Yu. Sklyadneva, A. Leonardo, P. M. Echenique, S. V. Eremeev, and E. V. Chulkov, J. Phys.: Condens. Matter 18, 7923 (2006).

    Article  ADS  Google Scholar 

  16. Ph. Hofmann, Y. Q. Cai, Ch. Grütter, and J. H. Bilgram, Phys. Rev. Lett. 81, 1670 (1998).

    Article  ADS  Google Scholar 

  17. S.-J. Tang, Ismail, P. T. Sprunger, and E. W. Plummer, Phys. Rev. B: Condens. Matter 65, 235428 (2002).

    Article  ADS  Google Scholar 

  18. J. E. Gayone, S. V. Hoffmann, Z. Li, and Ph. Hofmann, Phys. Rev. Lett. 91, 127601 (2003).

    Article  ADS  Google Scholar 

  19. A. Leonardo, I. Yu. Sklyadneva, V. M. Silkin, P. M. Echenique, and E. V. Chulkov, Phys. Rev. B: Condens. Matter 76(3), 035404 (2007).

    Article  ADS  Google Scholar 

  20. B. Hellsing B, A. Eiguren, and E. V. Chulkov, J. Phys: Condens. Matter 14(24), 5959 (2002).

    Article  ADS  Google Scholar 

  21. A. Eiguren, B. Hellsing, E. V. Chulkov, and P. M. Echenique, Phys. Rev. B: Condens. Matter 67, 235423 (2003).

    Article  ADS  Google Scholar 

  22. A. Eiguren, B. Hellsing, E. V. Chulkov, and P. M. Echenique, J. Electron Spectrosc. Relat. Phenom. 129, 111 (2003).

    Article  Google Scholar 

  23. M. F. Jensen, T. K. Kim, S. Bengió, I. Yu. Sklyadneva, S. V. Eremeev, E. V. Chulkov, and Ph. Hofmann, Phys. Rev. B: Condens. Matter 75, 153404 (2007).

    Article  ADS  Google Scholar 

  24. A. Eiguren, S. de Gironcoli, E. V. Chulkov, P. M. Echenique, and E. Tosatti, Phys. Rev. Lett. 91, 166803 (2003).

    Article  ADS  Google Scholar 

  25. I. Yu. Sklyadneva, E. V. Chulkov, and P. M. Echenique, J. Phys.: Condens. Matter 20, 165203 (2008).

    Article  ADS  Google Scholar 

  26. I. Yu. Sklyadneva, R. Heid, V. M. Silkin, A. Melzer, K.-P. Bohnen, P. M. Echenique, Th. Fauster, and E. V. Chulkov, Phys. Rev. B: Condens. Matter 80(4), 045429 (2009).

    Article  ADS  Google Scholar 

  27. A. Schäfer, I. L. Shumay, M. Wiets, M. Weinelt, Th. Fauster, E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Phys. Rev. B: Condens. Matter 61(19), 13159 (2000).

    Article  ADS  Google Scholar 

  28. G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland, Amsterdam, 1981).

    Google Scholar 

  29. D. Vanderbilt, Phys. Rev. B: Condens. Matter 32, 8412 (1985).

    Article  ADS  Google Scholar 

  30. R. Heid and K.-P. Bohnen, Phys. Rev. B: Condens. Matter 60, R3709 (1999).

    Article  ADS  Google Scholar 

  31. B. Meyer, C. Elsässer, and M. Fähnle, FORTRAN90: Program for Mixed-Basis Calculations for Crystals (Max-Planck-Institut für Metallforschung, Stuttgart, 1990).

    Google Scholar 

  32. S. G. Louie, K.-M. Ho, and M. L. Cohen, Phys. Rev. B: Condens. Matter 19, 1774 (1979).

    Article  ADS  Google Scholar 

  33. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13(12), 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  34. K. M. Ho, C. L. Fu, and B. N. Harmon, Phys. Rev. B: Condens. Matter 29(4), 1575 (1984).

    Article  ADS  Google Scholar 

  35. S. G. Louie, Phys. Rev. Lett. 40, 1525 (1978).

    Article  ADS  Google Scholar 

  36. C. Kittel, Introduction to Solid Physics (Wiley, New York, 1961).

    Google Scholar 

  37. H. Ohtani, M. A. van Hove, and G. A. Somorjai, Surf. Sci. 187, 372 (1987).

    Article  ADS  Google Scholar 

  38. R. P. Kauffman and A. M. Rappe, Phys. Rev. B: Condens. Matter 67, 085403 (2003).

    Article  ADS  Google Scholar 

  39. R. Heid and K.-P. Bohnen, Phys. Rep. 387, 151 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  40. J. L. F. Da Silva, C. Stampfl, and M. Scheffler, Surf. Sci. 600, 703 (2006).

    Article  ADS  Google Scholar 

  41. E. V. Chulkov, V. M. Silkin, and P. M. Echenique, Surf. Sci. 391, L1217 (1997).

    Article  Google Scholar 

  42. J. S. Nelson, M. S. Daw, and E. C. Sowa, Phys. Rev. B: Condens. Matter 40(3), 1465 (1989).

    Article  ADS  Google Scholar 

  43. I. Yu. Sklyadneva, R. Heid, K. P. Bohnen, and E. V. Chulkov, New J. Phys. 11, 103038 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Chulkov.

Additional information

Original Russian Text © I.Yu. Sklyadneva, S.S. Tsirkin, S.V. Eremeev, R. Heid, K.-P. Bohnen, E.V. Chulkov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 12, pp. 2383–2388.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklyadneva, I.Y., Tsirkin, S.S., Eremeev, S.V. et al. Contribution of phonons to the line width of surface electronic states on Pd(111). Phys. Solid State 53, 2508–2514 (2011). https://doi.org/10.1134/S1063783411120249

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411120249

Keywords

Navigation