Skip to main content
Log in

Radiative heat exchange of spherical particles with plates of a metal and an insulator

  • Metals
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Radiative heat exchange of a stationary spherical particle with a plate has been investigated in terms of fluctuation electrodynamics. The cases of metal and insulator materials (gold and silicon dioxide) of particles and plates have been numerically analyzed. Several theoretical models of thermal conductance have been compared and the results have been juxtaposed with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Rytov, Theory of Electric Fluctuations and Thermal Radiation (Academy of Sciences of the Soviet Union, Moscow, 1953) [in Russian].

    Google Scholar 

  2. M. L. Levin and S. M. Rytov, Theory of Equilibrium and Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  3. D. Polder and M. Van Hove, Phys. Rev. B: Solid State 4, 3303 (1971).

    Article  ADS  Google Scholar 

  4. R. P. Caren, Int. J. Heat Mass Transfer 17, 755 (1974).

    Article  Google Scholar 

  5. M. L. Levin, V. G. Polevoi, and S. M. Rytov, Zh. Eksp. Teor. Fiz. 79(6), 2087 (1980) [Sov. Phys. JETP 52 (6), 1054 (1980)].

    ADS  Google Scholar 

  6. J. J. Loomis and H. J. Maris, Phys. Rev. B: Condens. Matter 50, 18517 (1994).

    Article  ADS  Google Scholar 

  7. J. B. Pendry, J. Phys.: Condens. Matter 11, 6621 (1999).

    Article  ADS  Google Scholar 

  8. A. I. Volokitin and B. N. J. Persson, Phys. Rev. B: Condens. Matter 63, 205404 (2001).

    Article  ADS  Google Scholar 

  9. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Appl. Phys. Lett. 78(19), 293 (2001).

    Article  Google Scholar 

  10. A. I. Volokitin and B. N. J. Persson, Usp. Fiz. Nauk 177(9), 921 (2007) [Phys.—Usp. 50 (9), 879 (2007)].

    Article  Google Scholar 

  11. P.-O. Chapuis, M. Laroche, S. Volz, and J.-J. Greffet, Appl. Phys. Lett. 92(20), 210906 (2008).

    Article  Google Scholar 

  12. A. Perez-Madrid, J. M. Rubi, and L. C. Lapas, Phys. Rev. B: Condens. Matter 77, 155417 (2008).

    Article  ADS  Google Scholar 

  13. A. Narayanaswamy and Gang Chen, Phys. Rev. B: Condens. Matter 77, 075125 (2008).

    Article  ADS  Google Scholar 

  14. G. V. Dedkov and A. A. Kyasov, Surf. Sci. 604, 561 (2010).

    ADS  Google Scholar 

  15. G. V. Dedkov and A. A. Kyasov, Nanostrukt.: Mat. Fiz. Model. 1(2), 5 (2009); Fiz. Tverd. Tela (St. Petersburg) 51 (1), 3 (2009); G. V. Dedkov and A. A. Kyasov, J. Phys.: Condens. Matter 20 (35), 354006 (2008).

    Google Scholar 

  16. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  17. M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep. 353(1–3), 1 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, Surf. Sci. Rep. 57, 59 (2005).

    Article  ADS  Google Scholar 

  19. G. V. Dedkov and A. A. Kyasov, J. Comput. Theor. Nanosci. 7(10), 2019 (2010).

    Article  Google Scholar 

  20. G. V. Dedkov and A. A. Kyasov, Pis'ma Zh. Tekh. Fiz. 36(7), 66 (2010) [Tech. Phys. Lett. 36 (4), 322 (2010)].

    Google Scholar 

  21. G. V. Dedkov and A. A. Kyasov, Pis'ma Zh. Tekh. Fiz. 36(18), 32 (2010) [Tech. Phys. Lett. 36 (9), 844 (2010)].

    Google Scholar 

  22. C. M. Hargreaves, Phys. Lett. A 30, 491 (1969).

    Article  ADS  Google Scholar 

  23. K. Dransfeld and J. Xu, J. Microsc. (Oxford) 152, 35 (1988).

    Article  Google Scholar 

  24. J.-B. Xu, K. Läuger, R. Möller, K. Dransfeld, and I. H. Wilson, J. Appl. Phys. 76, 7209 (1994).

    Article  ADS  Google Scholar 

  25. A. Kittel, W. Muller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005).

    Article  ADS  Google Scholar 

  26. A. Narayanaswamy, Sheng Shen, and Gang Chen, Phys. Rev. B: Condens. Matter 78, 115303 (2008).

    Article  ADS  Google Scholar 

  27. A. Narayanaswamy, Sheng Shen, Lu Xu, Xiaoyuan Chen, and Gang Chen, Appl. Phys. A: Mater. Sci. Process. 96, 357 (2009).

    Article  ADS  Google Scholar 

  28. Sheng Shen, A. Narayanaswamy, and Gang Chen, Nano Lett. 9(8), 2909 (2009).

    Article  ADS  Google Scholar 

  29. G. Mie, Ann. Phys. (Weinheim) 25, 377 (1908).

    ADS  MATH  Google Scholar 

  30. Bo E. Sernelius and C. E. Roman-Velasquez, Phys. Rev. A: At., Mol., Opt. Phys. 78, 032111 (2008).

    Article  ADS  Google Scholar 

  31. E. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

    Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  33. G. V. Dedkov and A. A. Kyasov, Eur. Phys. Lett. 74, 44005 (2007); G. V. Dedkov and A. A. Kyasov, Pis'ma Zh. Tekh. Fiz. 33 (9), 61 (2007) [Tech. Phys. Lett. 33 (5), 388 (2007)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Dedkov.

Additional information

Original Russian Text © G.V. Dedkov, A.A. Kyasov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 4, pp. 625–632.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedkov, G.V., Kyasov, A.A. Radiative heat exchange of spherical particles with plates of a metal and an insulator. Phys. Solid State 53, 669–678 (2011). https://doi.org/10.1134/S1063783411040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411040123

Keywords

Navigation