Skip to main content
Log in

The role of heat flux in the nonsteady thermal problem of molybdenum sphere cooling in an electrostatic levitation experiment

  • Thermophysical Properties of Materials
  • Published:
High Temperature Aims and scope

Abstract

Abstract—The method for determining time dependences of the entropy-production density, force, and heat flux are presented. This method is based on processing the experimental thermogram at electrostatic levitation during spontaneous cooling of a solid molybdenum sphere. The results of numerical simulation of cooling a spherical sample from melting temperature T m ≈ 2880 K showed that the isothermal approximation for the temperature field in the sphere is valid, which made it possible to pass to the entropy density and calculate its production density. It is shown that heat flux in the time-dependent thermal problem under consideration determines the time dependence of the entropy production (it tends to the minimum zero value while approaching ambient temperature) and, therefore, is responsible for the validity of the extremum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kondepudi, D. and Prigojine, I., Modern Thermodynamics from Heat Engines to Dissipative Structures, Chichester: Wiley, 1999.

    Google Scholar 

  2. Rhim, W.K. and Paradis, P.-F., J. Rev. Sci. Instrum., 1999, vol. 70, p. 4652.

    Article  ADS  Google Scholar 

  3. Ishikawa, T., Paradis, P.-F., and Yoda, S., J. Rev. Sci. Instrum., 2001, vol. 72, p. 2490.

    Article  ADS  Google Scholar 

  4. Paradis, P.-F., Ishikawa, T., and Yoda, S., Int. J. Thermophys., 2002, vol. 23, no. 2, p. 555.

    Article  Google Scholar 

  5. Peletskii, V.E., Amasovich, E.S., Zaretskii, E.B., Lierman, Zh., and Dega, P., High Temp., 1979, vol. 17, no. 6, p. 1013.

    Google Scholar 

  6. Peletskii, V.E. and Druzhinin, V.P., Teplofiz. Vys. Temp., 1969, vol. 7, no. 1, p. 67.

    Google Scholar 

  7. Il’ichev, M.V., Mordynskii, V.B., Tereshonok, D.V., Tyuftyaev, A.S., and Chikunov, S.E., High Temp., 2015, vol. 53, no. 2, p. 193.

    Article  Google Scholar 

  8. Kolesnik, S.A., Formalev, V.F., and Kuznetsova, E.L., High Temp., 2015, vol. 53, no. 1, p. 68.

    Article  Google Scholar 

  9. Fogiel, M. and Wike, R., The Thermodynamics Problem Solver, New Jersey: Research & Education Association, 2004.

    Google Scholar 

  10. Demirel, Y. and Sandler, S.I., Int. J. Heat Mass Transfer, 2001, vol. 44, p. 2439.

    Article  Google Scholar 

  11. Jou, D., Casas-Vázquez, J., and Lebon, G., Extended Irreversible Thermodynamics, Berlin: Springer, 1996.

    Book  MATH  Google Scholar 

  12. Fort, J. and Llebot, J.E., J. Phys. A: Math. Gen., 1996, vol. 29, p. 3427.

    Article  ADS  Google Scholar 

  13. Serdyukov, S.I., Phys. Lett. A, 2003, vol. 316, p. 177.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kostanovskiy.

Additional information

Original Russian Text © A.V. Kostanovskiy, M.E. Kostanovskaya, 2017, published in Teplofizika Vysokikh Temperatur, 2017, Vol. 55, No. 6, pp. 696–699.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostanovskiy, A.V., Kostanovskaya, M.E. The role of heat flux in the nonsteady thermal problem of molybdenum sphere cooling in an electrostatic levitation experiment. High Temp 55, 866–869 (2017). https://doi.org/10.1134/S0018151X17060104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X17060104

Navigation