Skip to main content
Log in

Formation of ultrathin iron magnetic films on the silicon vicinal surface

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The phase composition, electronic structure, and magnetic properties of ultrathin layers of iron and iron silicides formed upon deposition of 1- to 25-Å-thick Fe film on an atomically clean vicinal surface Si(100) at room temperature have been investigated using high-resolution photoelectron spectroscopy with synchrotron radiation and the magnetic linear dichroism in Fe 3p electron photoemission. It has been demonstrated that the phases involved (Fe-Si solid solution, the Fe3Si silicide, the iron film) are formed in the same order as in iron deposition on the Si(100) singular face; in this particular case, the segregation of silicon on the iron film is noticeably enhanced. It has been established that the ferromagnetic ordering of the films in the plane of the sample surface follows a threshold character and sets in after a 7-Å-thick film has been deposited during the stage of growth of the Fe3Si silicide. A further deposition brings about an increase in the remanent magnetization of the film, which reaches saturation at coverages of about 20 — ricated exhibits magnetic anisotropy with the easy magnetization axis aligned with the substrate steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008).

    Article  ADS  Google Scholar 

  2. C. Liu and S. D. Bader, Phys. Rev. B: Condens. Matter 41, 553 (1990).

    Article  ADS  Google Scholar 

  3. Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. Lett. 70, 1006 (1993).

    Article  ADS  Google Scholar 

  4. Z. H. Nazir, C.-K. Lo, and M. Hardiman, J. Magn. Magn. Mater. 156, 435 (1996).

    Article  ADS  Google Scholar 

  5. C. Martinez Boubeta, C. Clavero, J. M. Garcia-Martin, G. Armelles, A. Cebollada, L. I. Balcells, J. L. Menendez, F. Piero, A. Cornet, and M. F. Toney, Phys. Rev. B: Condens. Matter 71, 014407 (2005).

    Article  ADS  Google Scholar 

  6. P. Torelli, S. Benedetti, P. Luches, L. Gragneniello, J. Fujii, and S. Valeri, Phys. Rev. B: Condens. Matter 79, 035408 (2009).

    Article  ADS  Google Scholar 

  7. J. Chen and J. L. Erskine, Phys. Rev. Lett. 68, 1212 (1992).

    Article  ADS  Google Scholar 

  8. Y. Mo, K. Varga, E. Kaxiras, and Z. Y. Zhang, Phys. Rev. Lett. 94, 155503 (2005).

    Article  ADS  Google Scholar 

  9. S. Rohart, Y. Girard, Y. Nahas, V. Repain, G. Rodary, A. Tejeda, and S. Rousset, Surf. Sci. 602, 28 (2008).

    Article  ADS  Google Scholar 

  10. V. Gougo dos Santos, J. Geshev, J. E. Schmidt. S. R. Teixeira, and L. G. Pereira, Phys. Rev. B: Condens. Matter 61, 1311 (2000).

    Article  ADS  Google Scholar 

  11. M. Cougo dos Santos, J. Geshev, L. G. Pereira, M. C. M. Alves, and J. E. Schmidt, Phys. Rev. B: Condens. Matter 70, 104420 (2004).

    Article  ADS  Google Scholar 

  12. M. V. Gomoyunova, I. I. Pronin, D. E. Malygin, A. S. Voronchihin, D. V. Vyalikh, and S. L. Molodtsov, Surf. Sci. 601, 5069 (2007).

    Article  ADS  Google Scholar 

  13. I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Yu. S. Dedkov, and S. L. Molodtsov, J. Appl. Phys. 104, 104914 (2008).

    Article  ADS  Google Scholar 

  14. I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Yu. S. Dedkov, and S. L. Molodtsov, Appl. Phys. A: Mater. Sci. Process. 94, 467 (2009).

    Article  ADS  Google Scholar 

  15. M. V. Gomoyunova, I. I. Pronin, S. M. Solov’ev, D. V. Vyalykh, and S. L. Molodtsov, Fiz. Tverd. Tela (St. Petersburg) 52(2), 377 (2010) [Phys. Solid State 52 (2), 404 (2010)].

    Google Scholar 

  16. Ch. Roth, F. U. Hillebrecht, H. B. Rose, and E. Kisker, Phys. Rev. Lett. 70, 3479 (1993).

    Article  ADS  Google Scholar 

  17. F. Sirotti and G. Rossi, Phys. Rev. B: Condens. Matter 49, 15682 (1994).

    Article  ADS  Google Scholar 

  18. N. Janke-Gilman, M. Hochstrasser, and R. F. Willis, Phys. Rev. B: Condens. Matter 70, 184439 (2004).

    Article  ADS  Google Scholar 

  19. I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalykh, Yu. S. Dedkov, and S. L. Molodtsov, Fiz. Tverd. Tela (St. Petersburg) 50(3), 533 (2008) [Phys. Solid State 50 (3), 553 (2008)].

    Google Scholar 

  20. M. V. Gomoyunova, I. I. Pronin, N. R. Gall, S. L. Molodtsov, and D. V. Vyalikh, Surf. Sci. 578, 174 (2005).

    Article  ADS  Google Scholar 

  21. R. Klaesges, C. Carbone, W. Eberhardt, C. Pampuch, O. Rader, T. Kachel, and W. Gudat, Phys. Rev. B: Condens. Matter 56, 10801 (1997).

    Article  ADS  Google Scholar 

  22. S. Hong, P. Wetzel, G. Gewinner, D. Bolmont, and C. Pirri, J. Appl. Phys. 78, 5404 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Pronin.

Additional information

Original Russian Text © M.V. Gomoyunova, G.S. Grebenyuk, I.I. Pronin, S.M. Solov’ev, D.E. Marchenko, D.V. Vyalikh, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 3, pp. 564–568.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomoyunova, M.V., Grebenyuk, G.S., Pronin, I.I. et al. Formation of ultrathin iron magnetic films on the silicon vicinal surface. Phys. Solid State 53, 606–611 (2011). https://doi.org/10.1134/S1063783411030127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411030127

Keywords

Navigation