Skip to main content
Log in

FMR study of the anisotropic properties of an epitaxial Fe3Si film on a Si(111) vicinal surface

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The anisotropic characteristics of an iron silicide (Fe3Si) epitaxial thin magnetic film grown on a Si(111) silicon vicinal surface with a misorientation angle of 0.14° have been measured by the ferromagnetic resonance method. It has been shown that the polar and azimuth misorientation angles of the crystallographic plane of the substrate can be determined simultaneously from the angular dependences of the ferromagnetic resonance field of the epitaxial film. The effective saturation magnetization of the film M eff = 1105 G and the constant of the cubic magnetocrystalline anisotropy K 4 = 1.15 × 105 erg/cm3 have been determined. The misorientation of the substrate plane leads to the formation of steps on the film surface and, as a result, to the appearance of uniaxial magnetic anisotropy of the magnetic dipole nature with the constant K 2 = 796 erg/cm3. Small unidirectional magnetic anisotropy (K 1 = 163 erg/cm3), which may be associated with symmetry breaking on the steps of the film and is due to the Dzyaloshinskii–Moriya interaction, has been detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  2. I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004). [112] [110]

    Article  ADS  Google Scholar 

  3. J.-L. Lin, D. Y. Petrovykh, J. Viernow, F. K. Men, D. J. Seo, and F. J. Himpsel, J. Appl. Phys. 84, 255 (1998).

  4. F. K. Men, F. Liu, P. J. Wang, C. H. Chen, D. L. Cheng, J. L. Lin, and F. J. Himpsel, Phys. Rev. Lett. 88, 096105 (2002).

    Article  ADS  Google Scholar 

  5. A. Stupakiewicz, E. Y. Vedmedenko, A. Fleurence, T. Maroutian, P. Beauvillain, A. Maziewski, and R. Wiesendanger, Phys. Rev. Lett. 103, 137202 (2009).

    Article  ADS  Google Scholar 

  6. K. S. Ermakov, Yu. P. Ivanov, and L. A. Chebotkevich, Phys. Solid State 52, 2555 (2010).

    Article  ADS  Google Scholar 

  7. Y. P. Fang, W. He, H. L. Liu, Q. F. Zhan, H. F. Du, Q. Wu, H. T. Yang, X. Q. Zhang, and Z. H. Cheng, Appl. Phys. Lett. 97, 022507 (2010).

    Article  ADS  Google Scholar 

  8. Y. Shiratsuchi, M. Yamamoto, and S. D. Bader, Prog. Surf. Sci. 82, 121 (2007).

    Article  ADS  Google Scholar 

  9. M. Farle, Rep. Prog. Phys. 61, 755 (1998).

    Article  ADS  Google Scholar 

  10. I. A. Yakovlev, S. N. Varnakov, B. A. Belyaev, S. M. Zharkov, M. S. Molokeev, I. A. Tarasov, and S. G. Ovchinnikov, JETP Lett. 99, 527 (2014).

    Article  ADS  Google Scholar 

  11. B. A. Belyaev, A. V. Izotov, and A. A. Leksikov, IEEE Sensors 5, 260 (2005).

    Article  Google Scholar 

  12. B. A. Belyaev, A. A. Leksikov, I. Ya. Makievskii, and V. V. Tyurnev, Instrum. Exp. Tech. 40, 390 (1997).

    Google Scholar 

  13. B. A. Belyaev, A. V. Izotov, S. Ya. Kiparisov, and G. V. Skomorokhov, Phys. Solid State 50, 676 (2008).

    Article  ADS  Google Scholar 

  14. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Rep. Prog. Phys. 59, 1409 (1996).

    Article  ADS  Google Scholar 

  15. J. Smit and H. Beljers, Philips Res. Rep. 10, 113 (1955).

    Google Scholar 

  16. H. Suhl, Phys. Rev. 97, 555 (1955).

    Article  ADS  Google Scholar 

  17. S. Noor, I. Barsukov, M. S. Özkan, L. Elbers, N. Melnichak, J. Lindner, M. Farle, and U. Köh, J. Appl. Phys. 113, 103908 (2013).

    Article  ADS  Google Scholar 

  18. T. Sadoh, T. Takeuchi, K. Ueda, A. Kenjo, and M. Miyao, Jpn. J. Appl. Phys. 45, 3598 (2006).

    Article  ADS  Google Scholar 

  19. H. P. J. Wijn, Magnetic Properties of Metals: D-Elements, Alloys and Compounds (Springer, Berlin, 1991).

    Book  Google Scholar 

  20. D. S. Chuang, C. A. Ballentine, and R. C. O. Handley, Phys. Rev. B 49, 15084 (1994).

    Article  ADS  Google Scholar 

  21. D. Sander, J. Phys.: Condens. Matter 16, R603 (2004).

    ADS  Google Scholar 

  22. R. Arias and D. L. Mills, Phys. Rev. B 59, 11871 (1999).

    Article  ADS  Google Scholar 

  23. E. Schlömann, J. Appl. Phys. 41, 1617 (1970).

    Article  ADS  Google Scholar 

  24. W. Wulfhekel, S. Knappmann, B. Gehring, and H. P. Oepen, Phys. Rev. B 50, 16074 (1994).

    Article  ADS  Google Scholar 

  25. W. Wulfhekel, S. Knappmann, and H. P. Oepen, J. Appl. Phys. 79, 988 (1996).

    Article  ADS  Google Scholar 

  26. R. Skomski, H. P. Oepen, and J. Kirschner, Phys. Rev. B 58, 11138 (1998).

    Article  ADS  Google Scholar 

  27. I. Dzyaloshinsky, J. Phys. Chem. Sol. 4, 241 (1958).

    Article  ADS  Google Scholar 

  28. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Additional information

Original Russian Text © B.A. Belyaev, A.V. Izotov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 1, pp. 44–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Izotov, A.V. FMR study of the anisotropic properties of an epitaxial Fe3Si film on a Si(111) vicinal surface. Jetp Lett. 103, 41–45 (2016). https://doi.org/10.1134/S0021364016010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016010033

Keywords

Navigation