Skip to main content
Log in

Investigation of the morphology of the van der Waals surface of the InSe single crystal

  • Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The morphology of the (0001) van der Waals surfaces of the layered single crystal In1.03Se0.97, which were prepared using different techniques, has been investigated by scanning probe microscopy methods. It has been assumed that the van der Waals surface prepared with the use of an adhesive tape oxidizes in air due to the chemisorption of acid agents on dangling bonds of the metal and selenium. An analysis of the current-voltage characteristics of the tunneling current has shown that the composition of natural oxides represents a mixture of phases of the In2O3 oxide and wide-band-gap selenium oxides. In the InSe surface prepared by cleavage with subsequent exposure in air for approximately 2 min, the scanning with a tunneling microscope has revealed a surface ordering in the form of a corrugation of a complex profile with a fine structure. The last fact reflects the charge density redistribution after the chemisorption of gas molecules from air on this surface and its relaxation to the state with a minimum energy. Atoms of the basal plane are observed on the InSe(0001) van der Waals surface prepared by cleavage in an oxygen-free medium. The surface corrugation is absent. Point defects cause a disturbance of the periodic potential of the single crystal, which extends over a distance equal to four lattice spacings and appears as a shadowing. A technique has been proposed for producing In2O3 oxide nanostructures on the surface of the single crystal of the layered semiconductor InSe with the use of an atomic-force microscope probe as a nanoindenter. The ability of the probe to operate in gaseous and liquid media significantly extends the capabilities of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Lashkarev, A. I. Dmitriev, A. A. Baida, Z. D. Kovalyuk, M. V. Kondrin, and A. A. Pronin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37(2), 145 (2003) [Semiconductors 37 (2), 134 (2003)].

    Google Scholar 

  2. V. M. Kaminskii, Z. D. Kovalyuk, I. V. Mintyanskii, and M. V. Tovarnitskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 20(11), 1921 (1984).

    Google Scholar 

  3. A. I. Dmitriev, G. V. Lashkarev, Z. D. Kovalyuk, V. I. Lazorenko, and D. A. Fedorchenko, Ukr. Fiz. Zh. 35(3), 400 (1990).

    Google Scholar 

  4. N. B. Brandt, V. A. Kul’bachinskii, Z. D. Kovalyuk, and G. V. Lashkarev, Fiz. Tekh. Poluprovodn. (Leningrad) 21(6), 1001 (1987) [Sov. Phys. Semicond. 21 (6), 613 (1987)].

    Google Scholar 

  5. A. I. Dmitriev, Z. D. Kovaljuk, G. V. Lashkarev, and V. I. Lazorenko, Phys. Status Solidi B 162(1), 225 (1990).

    Article  Google Scholar 

  6. A. I. Dmitriev, G. V. Lashkarev, and D. A. Fedorchenko, in Proceedings of the Eighteenth International Conference on Infrared and Millimeter Waves, University of Essex, Colchester, United Kingdom, September 6–10, 1993 (University of Essex, Colchester, 1993), p. 226.

    Google Scholar 

  7. A. I. Dmitriev, G. V. Lashkarev, V. K. Kiselyev, V. K. Kononenko, and E. M. Kuleshov, Int. J. Infrared Millimeter Waves 16, 775 (1995).

    Article  ADS  Google Scholar 

  8. A. Yu. Zavrazhnov and D. N. Turchen, Kondensirovannye Sredy Mezhfaznye Granitsy 1(2), 190 (1999).

    Google Scholar 

  9. T. Ohta, A. Klust, J. A. Adams, Q. Yu, M. A. Olmstead, and F. S. Ohuchi, Phys. Rev. B: Condens. Matter 69, 125322 (2004).

    Article  ADS  Google Scholar 

  10. O. Lang, A. Klein, C. Pettenkofer, W. Jaegermann, and A. Chevy, J. Appl. Phys. 80, 3817 (1996).

    Article  ADS  Google Scholar 

  11. E. Wisotzki, A. Klein, and W. Jaegermann, Thin Solid Films 380, 263 (2000).

    Article  ADS  Google Scholar 

  12. A. P. Bakhtinov, V. N. Vodop’yanov, E. I. Slyn’ko, Z. D. Kovalyuk, and O. S. Lytvyn, Pis’ma Zh. Tekh. Fiz. 33(2), 80 (2007) [Tech. Phys. Lett. 33 (1), 86 (2007)].

    Google Scholar 

  13. S. I. Drapak, S. V. Gavrilyuk, Z. D. Kovalyuk, and O. S. Lytvyn, Fiz. Tekh. Poluprovodn. (St. Petersburg) 42(4), 423 (2008) [Semiconductors 42 (4), 414 (2008)].

    Google Scholar 

  14. A. P. Bakhtinov, V. N. Vodopyanov, Z. D. Kovalyuk, and O. S. Lytvyn, Fiz. Tekh. Poluprovodn. (St. Petersburg) 44(2), 180 (2010) [Semiconductors 44 (2), 171 (2010)].

    Google Scholar 

  15. S. I. Drapak, A. P. Bakhtinov, S. V. Garvrylyuk, Z. D. Kovalyuk, and O. S. Lytvyn, Superlattices Microstruct. 44, 563 (2008).

    Article  ADS  Google Scholar 

  16. Z. D. Kovalyuk, A. P. Bakhtinov, V. N. Vodop’yanov, A. V. Zaslonkin, and V. V. Netyaga, in Carbon Nanomaterials in Clean Energy Hydrogen Systems, Ed. by B. Baranowski, S. Yu. Zaginaichenko, D. V. Schur, V. V. Skorokhod, and A. Veziroglu (Springer, Dordrecht, The Netherlands, 2009), p. 765.

    Chapter  Google Scholar 

  17. A. P. Bakhtinov, Z. D. Kovalyuk, O. N. Sydor, V. N. Katerinchuk, and O. S. Lytvyn, Fiz. Tverd. Tela (St. Petersburg) 49(8), 1497 (2007) [Phys. Solid State 49 (8), 1572 (2007)].

    Google Scholar 

  18. D. A. Bonnell and J. Garra, Rep. Prog. Phys. 71, 155308 (2008).

    Article  Google Scholar 

  19. K. Uosaki and M. Koinuma, J. Appl. Phys. 74, 1675 (1993).

    Article  ADS  Google Scholar 

  20. K. Uosaki and M. Koinuma, Electroanal. Chem. 357, 301 (1993).

    Article  Google Scholar 

  21. T. Hayashi, K. Ueno, K. Saiki, and A. Koma, J. Cryst. Growth 219, 115 (2000).

    Article  ADS  Google Scholar 

  22. M. Z. Zarbaliev, Fizika CILD X(3), 8 (2004).

    Google Scholar 

  23. A. I. Dmitriev, G. V. Lashkarev, and Z. D. Kovalyuk, Nanosist., Nanomater., Nanotekhnol. 4(2), 407 (2006).

    Google Scholar 

  24. D. H. Mosca, N. Mattoso, C. M. Lepiensci, W. Veiga, I. Mazzaro, V. H. Etgens, and M. Eddrief, J. Appl. Phys. 91, 140 (2002).

    Article  ADS  Google Scholar 

  25. T. Wolkenstein, Electronic Processes on Semiconductor Surfaces During Chemisorption (Nauka, Moscow, 1987; Consultants Bureau, New York, 1991).

    Google Scholar 

  26. O. A. Balitskii, R. V. Lutsiv, V. P. Savchyn, and J. M. Stakhira, Mater. Sci. Eng., B 56, 5 (1998).

    Article  Google Scholar 

  27. O. A. Balitskii, V. P. Savchyn, and V. O. Yukhymchuk, Semicond. Sci. Technol. 17, L1 (2002).

    Article  ADS  Google Scholar 

  28. V. N. Tondare, B. I. Birajdar, N. Pradeep, D. S. Joag, A. Lobo, and S. K. Kulkarni, Appl. Phys. Lett. 77(15), 2394 (2000).

    Article  ADS  Google Scholar 

  29. Z. F. Krasil’nik, P. Lytvyn, D. N. Lobanov, N. Mestres, A. V. Novikov, J. Pascual, M. Ya. Valakh, and V. A. Yukhymchuk, Nanotechnology 13(1), 81 (2002).

    Article  ADS  Google Scholar 

  30. S. I. Drapak and Z. D. Kovalyuk, Fiz. Tekh. Poluprovodn. (St. Petersburg) 41(3), 312 (2007) [Semiconductors 41 (3), 301 (2007)].

    Google Scholar 

  31. C. Arena, B. Kleinsorge, J. Robertson, W. J. Milne, and M. E. Welland, J. Appl. Phys. 85, 1609 (1999).

    Article  ADS  Google Scholar 

  32. E. Spiecker, S. Hollensteiner, W. Jager, A. K. Schmid, A. M. Minor, and U. Dahmen, in Abstracts of the E-MRS 2005 Spring Meeting, Symposium A: “Current Trends in Nanoscience—From Materials to Application,” Strasbourg, France, May 31–June 3, 2005 (Strasbourg, 2005), p. A–3/3.

  33. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 49(8), 1392 (2007) [Phys. Solid State 49 (8), 1460 (2007)].

    Google Scholar 

  34. A. I. Dmitriev, V. M. Kaminskii, G. V. Lashkarev, P. E. Butorin, Z. D. Kovalyuk, V. I. Ivanov, and A. I. Beskrovnyi, Fiz. Tverd. Tela (St. Petersburg) 51(11), 2207 (2009) [Phys. Solid State 51 (11), 2342 (2009)].

    Google Scholar 

  35. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 5696 (2004).

    Article  Google Scholar 

  36. O. Yu. Kolesnychenko, R. de Kort, and M. I. Katsnelson, Nature (London) 415, 507 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dmitriev.

Additional information

Original Russian Text © A.I. Dmitriev, V.V. Vishnjak, G.V. Lashkarev, V.L. Karbovskyi, Z.D. Kovaljuk, A.P. Bahtinov, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 3, pp. 579–589.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, A.I., Vishnjak, V.V., Lashkarev, G.V. et al. Investigation of the morphology of the van der Waals surface of the InSe single crystal. Phys. Solid State 53, 622–633 (2011). https://doi.org/10.1134/S1063783411030085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411030085

Keywords

Navigation