Skip to main content
Log in

Specific features of depth distribution profiles of implanted cobalt ions in rutile TiO2

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on the results of the calculation of the depth distribution profiles of the concentration of the impurity implanted into an anisotropic crystalline material. The sputtering of the irradiated material, fast one-dimensional diffusion of the impurity along structural channels, and accumulation of the implanted impurity at different depths have been taken into account. The results of the calculations have been compared with the experimental distribution profiles of cobalt ions implanted into the crystal structure of rutile TiO2 along and across structural channels at different temperatures of the irradiated substrate. A comparison of the model and experimental profiles has made it possible to evaluate the precipitation rate of cobalt in the TiO2 matrix on different precipitation centers. A model has been proposed for explaining the unusual shift in the peak of the concentration distribution of implanted ions deep into the sample with an increase in the temperature of the irradiated substrate. The model has allowed one to separate the contributions from different phases of the impurity (nanoparticles and solid solution) to the magnetism of the Co: TiO2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ryssel and I. Ruge, Ionenimplantation (B. G. Teubner, Stuttgart, 1978; Nauka, Moscow, 1983) [in German and in Russian].

    Google Scholar 

  2. F. F. Komarov and A. F. Komarov, Physical Processes of Ion Implantation in Solids (Tekhnoprint, Minsk, 2001) [in Russian].

    Google Scholar 

  3. N. Theodoropoulou, A. F. Hebard, S. N. G. Chu, M. E. Overberg, C. R. Abernathy, S. J. Pearton, R. G. Wilson, and J. M. Zavada, J. Appl. Phys. 91, 7499 (2002).

    Article  ADS  Google Scholar 

  4. S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, Mater. Sci. Eng., R 40, 137 (2003).

    Article  Google Scholar 

  5. K. Potzger and Sh. Zhou, Phys. Status Solidi B 246, 1147 (2009).

    Article  ADS  Google Scholar 

  6. D. C. Cronemeyer, Phys. Rev. 87, 876 (1952).

    Article  ADS  Google Scholar 

  7. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science (Washington) 291, 854 (2001).

    Article  ADS  Google Scholar 

  8. V. Shutthanandan, S. Thevuthasan, S. M. Heald, T. Drou- bay, M. H. Engelhard, T. C. Kaspar, D. E. McCready, L. Saraf, S. A. Chambers, B. S. Mun, N. Hamdan, P. Nachimuthu, B. Taylor, R. P. Sears, and B. Sinkovic, Appl. Phys. Lett. 84, 4466 (2004).

    Article  ADS  Google Scholar 

  9. R. I. Khaibullin, L. R. Tagirov, B. Z. Rameev, Sh. Z. Ibragimov, F. Yildiz, and B. Aktas, J. Phys.: Condens. Matter 16, L443 (2004).

    Article  ADS  Google Scholar 

  10. R. Janisch, P. Gopal, and N. A. Spaldin, J. Phys.: Condens. Matter 17, R657 (2005).

    Article  ADS  Google Scholar 

  11. S. A. Chambers, Surf. Sci. Rep. 61, 345 (2006).

    Article  ADS  Google Scholar 

  12. Minerals: A Reference Book, Ed. by F. V. Chukhrov (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  13. J. Sasaki, N. L. Peterson, and K. Hoshino, J. Phys. Chem. Solids 46, 1267 (1985).

    Article  ADS  Google Scholar 

  14. R. I. Khaibullin, Sh. Z. Ibragimov, L. R. Tagirov, V. N. Popok, and I. B. Khaibullin, Nucl. Instrum. Methods Phys. Res., Sect. B 257, 369 (2007).

    Article  ADS  Google Scholar 

  15. N. Akdogan, A. Nefedov, H. Zabel, K. Westerholt, H.W. Becker, C. Somsen, S. Gok, A. Bashir, R. I. Khaibullin, and L. R. Tagirov, J. Phys. D: Appl. Phys. 42, 115005 (2009).

    Article  ADS  Google Scholar 

  16. J. F. Ziegler, J. P. Biersak, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, United States, 1996).

    Google Scholar 

  17. W. Moller and W. Eckstein, Nucl. Instrum. Methods Phys. Res., Sect. B 2, 814 (1984).

    Article  ADS  Google Scholar 

  18. V. M. Konoplev, Radiat. Eff. Lett. Sect. 87, 207 (1986).

    Article  Google Scholar 

  19. B. M. Budak, A. A. Samarskii, and A. N. Tikhonov, A Collection of Problems in Mathematical Physics (Nauka, Moscow, 1972; Pergamon, Oxford, 1964).

    Google Scholar 

  20. P. V. Pavlov, E. I. Zorin, D. I. Tetel’baum, V. P. Lesnikov, G. M. Ryzhkov, and A. V. Pavlov, “Formation of Aluminum Nitride, Change in the Electrical Conductivity, and Sputtering of Aluminum Films under Bombardment with Nitrogen Ions,” in Proceedings of the All-Union Scientific Conference of Lobachevskii Gor’kii State University, Gor’kii, Soviet Union, 1972 (Lobachevskii Gor’kii State University, Gor’kii, 1972), p. 169.

    Google Scholar 

  21. R. I. Khaibullin, L. R. Tagirov, Sh. Z. Ibragimov, V. F. Valeev, V. I. Nuzhdin, Yu. N. Osin, A. A. Achkeev, I. A. Faizrakhmanov, and N. A. Cherkashin, Uch. Zap. Kazan. Gos. Univ., Ser. Fiz.—Mat. Nauki 149(3), 31 (2007).

    Google Scholar 

  22. R. I. Khaibullin, L. R. Tagirov, V. V. Bazarov, Sh. Z. Ibragimov, and I. A. Faizrakhmanov, “Method for Preparation of the Ferromagnetic Semiconductor Material,” RF Patent No. 2 361 320, Byull. Izobret., No. 19 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Achkeev.

Additional information

Original Russian Text © A.A. Achkeev, R.I. Khaibullin, L.R. Tagirov, A. Mackova, V. Hnatowicz, N. Cherkashin, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 3, pp. 508–517.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achkeev, A.A., Khaibullin, R.I., Tagirov, L.R. et al. Specific features of depth distribution profiles of implanted cobalt ions in rutile TiO2 . Phys. Solid State 53, 543–553 (2011). https://doi.org/10.1134/S1063783411030024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411030024

Keywords

Navigation