Skip to main content
Log in

Structural features and atomic dynamics in Si/SiO2 superlattices: First-principles calculations

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The crystal structure and atomic dynamics of Si/SiO2 superlattices based on silicon in the diamond and β-cristobalite lattices have been investigated. The two basic models for the description of interfaces in the system under investigation, i.e., the double-bonded model and the bridge-oxygen model, have been considered. It has been shown that the atomic structure of the lattices substantially changes during the relaxation as compared to ideal model structures. An analysis of the vibrational spectra has demonstrated that, in the high-frequency spectral range (600–1200 cm−1), there appear vibrational modes that have no dispersion in the direction of the lattice growth. The absence of vibrations characteristic of silicon and β-cristobalite in the spectra of the superlattices indicates that their formation occurs at the interfaces and that a particular frequency dependence is determined by the redistribution of atoms in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Silin, Usp. Fiz. Nauk 147(3), 485 (1985) [Sov. Phys.-Usp. 28 (11), 972 (1985)].

    Article  MathSciNet  Google Scholar 

  2. R. Tsu, Superlattice to Nanoelectronics (Elsevier, Amsterdam, 2005).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1980).

    Google Scholar 

  4. J. Sapriel and B. Djafari Rouhani, Surf. Sci. Rep. 10, 189 (1989).

    Article  Google Scholar 

  5. S. Baroni, S. De Gironcoli, and A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001).

    Article  ADS  Google Scholar 

  6. W. Kohn and L. J. Sham, Phys. Rev. [Sect.] A 140, 1133 (1965).

    MathSciNet  ADS  Google Scholar 

  7. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  8. Quantum-ESPRESSO: An Integrated Suite of Computer Codes for Electronic-Structure Calculations and Materials Modeling at the Nanoscale; http://www.quantum-espresso.org.

  9. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  10. C. Lee and X. Gonze, Phys. Rev. B: Condens. Matter 51, 8610 (1995).

    Article  ADS  Google Scholar 

  11. X. Gonze, X. Gonze, J.-C. Charlier, D. C. Allan, and M. P. Teter, Phys. Rev. B: Condens. Matter 50, 13035 (1994).

    Article  ADS  Google Scholar 

  12. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).

    MathSciNet  ADS  Google Scholar 

  13. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).

    Article  ADS  Google Scholar 

  14. P. Carrier, L. J. Lewis, and M. W. C. Dharma-Wardana, Phys. Rev. B: Condens. Matter 64, 195330 (2001).

    Article  ADS  Google Scholar 

  15. The Physics of SiO2and Its Interfaces, Ed. by S. T. Pantelides (Pergamon, New York, 1978).

    Google Scholar 

  16. N. Tit and M. W. C. Dharma-Wardana, Phys. Lett. A 254, 233 (1999).

    Article  ADS  Google Scholar 

  17. J. Zi, K. Zhang, and X. Xie, Prog. Surf. Sci. 54, 69 (1997).

    Article  ADS  Google Scholar 

  18. X. Hu, G. Wang, W. Wu, P. Jiang, and J. Zi, J. Phys.: Condens. Matter 13, L835 (2001).

    Article  ADS  Google Scholar 

  19. I. P. Swainson and M. T. Dove, Phys. Rev. Lett. 71, 193 (1993).

    Article  ADS  Google Scholar 

  20. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963; Mir, Moscow, 1965).

    Google Scholar 

  21. A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2115 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Mazurenko.

Additional information

Original Russian Text © A.N. Rudenko, V.G. Mazurenko, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 11, pp. 2253–2258.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudenko, A.N., Mazurenko, V.G. Structural features and atomic dynamics in Si/SiO2 superlattices: First-principles calculations. Phys. Solid State 52, 2409–2414 (2010). https://doi.org/10.1134/S1063783410110302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410110302

Keywords

Navigation