Skip to main content
Log in

Influence of 3d metal atoms on the geometry, electronic structure, and stability of a Mg13H26 cluster

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on the results of the theoretical investigation of magnesium hydride nanoclusters doped with 3d metals (from Sc to Zn). The influence of transition metal atoms on the geometry, electronic structure, and energy characteristics of the clusters has been analyzed. The results of the performed calculations have been compared with the available experimental data. This comparison has made it possible to predict which 3d transition elements can serve as the most effective catalysts for the improvement of the thermodynamic characteristics of MgH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz, J. Alloys Compd. 292, 247 (1999).

    Article  Google Scholar 

  2. X. Shang, M. Bououdina, and Z. X. Guo, J. Alloys Compd. 349, 217 (2003).

    Article  Google Scholar 

  3. S. Rivoirard, P. de Rango, D. Fruchart, J. Charbonnier, and D. Vempaire, J. Alloys Compd. 356–357, 622 (2003).

    Article  Google Scholar 

  4. J. Charbonnier, P. de Rango, D. Fruchart, S. Miraglia, L. Pontonnier, S. Rivoirard, N. Skryabina, and P. Vulliet, J. Alloys Compd. 383, 205 (2004).

    Article  Google Scholar 

  5. X. Shang, M. Bououdina, Y. Song, and Z. X. Guo, Int. J. Hydrogen Energy 29, 73 (2004).

    Article  Google Scholar 

  6. A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, J. Alloys Compd. 288, 217 (1999).

    Article  Google Scholar 

  7. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd. 315, 237 (2001).

    Article  Google Scholar 

  8. K.-F. Aguey-Zinsou, J. R. Ares Fernandez, T. Klassen, and R. Bormann, Int. J. Hydrogen Energy 32, 2400 (2007).

    Article  Google Scholar 

  9. M. Y. Song, J.-L. Bobet, and B. Darriet, J. Alloys Compd. 340, 256 (2002).

    Article  Google Scholar 

  10. D. Kyoi, T. Sato, E. Rönnebro, N. Kitamura, A. Ueda, M. Ito, S. Katsuyama, S. Hara, D. Noréus, and T. Sakai, J. Alloys Compd. 372, 213 (2004).

    Article  Google Scholar 

  11. E. Rönnebro, D. Kyoi, A. Kitano, Y. Kitano, and T. Sakai, J. Alloys Compd. 404–406, 68 (2005).

    Article  Google Scholar 

  12. T. Sato, D. Kyoi, E. Rönnebro, N. Kitamura, T. Sakai, and D. Noréus, J. Alloys Compd. 417, 230 (2006).

    Article  Google Scholar 

  13. D. Kyoi, T. Sato, E. Rönnebro, Y. Tsuji, N. Kitamura, A. Ueda, M. Ito, S. Katsuyama, S. Hara, D. Noréus, and T. Sakai, J. Alloys Compd. 375, 253 (2004).

    Article  Google Scholar 

  14. D. Kyoi, N. Kitamura, H. Tanaka, A. Ueda, S. Tanase, and T. Sakai, J. Alloys Compd. 428, 268 (2007).

    Article  Google Scholar 

  15. C. M. Stander and R. A. Pacey, J. Phys. Chem. Solids 39, 829 (1978).

    Article  ADS  Google Scholar 

  16. T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, and M. Sakata, Appl. Phys. Lett. 81, 2008 (2002).

    Article  ADS  Google Scholar 

  17. P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellväg, Phys. Rev. Lett. 89, 175506 (2002).

    Article  ADS  Google Scholar 

  18. P. Vajeeston, P. Ravindran, B. C. Hauback, H. Fjellväg, A. Kjekshus, S. Furuseth, and M. Hanfland, Phys. Rev. B: Condens. Matter 73, 224102 (2006).

    ADS  Google Scholar 

  19. Y. Song, Z. X. Guo, and R. Yang, Phys. Rev. B: Condens. Matter 69, 094205 (2004).

    ADS  Google Scholar 

  20. Y. Song, Z. X. Guo, and R. Yang, Mater. Sci. Eng., A 365, 73 (2004).

    Article  Google Scholar 

  21. N. Novaković, J. Grbovi Novaković, L. Matović, M. Manasijević, I. Radisavljević, B. Paskaš Mamula, and N. Ivanović, Int. J. Hydrogen Energy 35, 598 (2010).

    Article  Google Scholar 

  22. Y. Song, W. C. Zhang, and R. Yang, Int. J. Hydrogen Energy 34, 1389 (2009).

    Article  Google Scholar 

  23. M. G. Shelyapina, D. Fruchart, and P. Wolfers, Int. J. Hydrogen Energy 35, 2025 (2010).

    Article  Google Scholar 

  24. M. G. Shelyapina, D. Fruchart, S. Miraglia, and G. Girard, Fiz. Tverd. Tela (St. Petersburg) (in press)

  25. A. Lyalin, I. A. Solovyov, A. V. Solovyov, and W. Greiner, Phys. Rev. A: At., Mol., Opt. Phys. 67, 063203 (2003).

    ADS  Google Scholar 

  26. R. W. P. Wagemans, J. H. van Lenthe, P. E. de Jongh, A. J. van Dillen, and K. P. de Jong, J. Am. Chem. Soc. 127, 16675 (2005).

    Article  Google Scholar 

  27. M. Yu. Siretskiy, M. G. Shelyapina, D. Fruchart, S. Miraglia, and N. E. Skryabina, J. Alloys Compd. 480, 114 (2009).

    Article  Google Scholar 

  28. J. P. Perdew, in Electronic Structure of Solids, Ed. by P. Ziesche and H. Eshrig (Akademie, Berlin, 1991), p. 11.

    Google Scholar 

  29. K. Burke, J. P. Perdew, and Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. by J. F. Dobson, G. Vignale, and M. P. Das (Plenum, New York, 1998).

    Google Scholar 

  30. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  ADS  Google Scholar 

  31. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian, Pittsburgh, PA, United States, 1996).

    Google Scholar 

  32. Gaussian 03, Revision C.02:Software Package Used for Calculating Molecular Electronic Structure and Properties, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrze- wski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Far- kas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT (2004).

    Google Scholar 

  33. Handbook of Chemistry and Physics, Ed. by R. C. Weast (CRC Press, New York, 1974), Section D.

    Google Scholar 

  34. H. Kawamura, V. Kumar, Q. Sun, and Y. Kawazoe, Phys. Rev. A: At., Mol., Opt. Phys. 67, 063205 (2003).

    ADS  Google Scholar 

  35. J. Jung and Y.-K. Hana, J. Chem. Phys. 125, 064306 (2006).

    Article  ADS  Google Scholar 

  36. S. V. Halilov, D. J. Singh, M. Gupta, and R. Gupta, Phys. Rev. B: Condens. Matter 70, 195117 (2004).

    ADS  Google Scholar 

  37. M. Gupta, D. J. Singh, and R. Gupta, Phys. Rev. B: Condens. Matter 71, 092107 (2005).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Shelyapina.

Additional information

Original Russian Text © M.G. Shelyapina, M.Yu. Siretskiy, 2010, published in Fizika Tverdogo Tela, 2010, Vol. 52, No. 9, pp. 1855–1860.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelyapina, M.G., Siretskiy, M.Y. Influence of 3d metal atoms on the geometry, electronic structure, and stability of a Mg13H26 cluster. Phys. Solid State 52, 1992–1998 (2010). https://doi.org/10.1134/S1063783410090349

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783410090349

Keywords

Navigation