Skip to main content
Log in

Structure and Electronic Properties of Neutral and Anionic X-Doped Medium-Sized Mg16 (X = Co, Fe, Ni) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Projects about magnesium-based doped of transition metal have constantly attracted much attention in cluster science, while the research of Co, Fe, Ni doped Mid-Sized Mg16 clusters has not been reported. Here, the geometric construction and electronic properties of neutral and negative Mg16X (X = Co, Fe, Ni) clusters were researched by unbiased CALYPSO structure search codes and subsequent DFT calculations at the B3PW91 level. The results show that Fe and Co atoms are more likely to replace the central bits of the caged Mg170/− cluster, but the excellent and stable configuration of the Mg170/− cluster is perfectly maintained. Simultaneously, the doping of Co and Fe can cause the cluster to produce the corresponding magnetic moment. The caged Mg16Co clusters with a central Co atom have good binding energy, local charge transfer and HOMO–LUMO gap according to stability analysis, which indicates that Mg16Co clusters has better relative stability. In addition, it is found that there is an intense interaction between Mg-3s, p and Co-3d AO (molecular orbitals) through the analysis of molecular orbitals and adaptive natural density partitioning (AdNDP), which may be the main reason for the high stability of Mg16Co clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Jena and Q. Sun (2018). Chem. Rev. 118, 5755.

    Article  CAS  PubMed  Google Scholar 

  2. E. C. Tyo and S. Vajda (2015). Nat. Nanotechnol. 10, 577.

    Article  CAS  PubMed  Google Scholar 

  3. B. C. Zhu, P. J. Deng, and L. Zeng (2019). Front. Chem. 7, 771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. B. Baliga and P. Tsakiropoulos (2013). Mater. Sci. Technol.-Lond. 9, 513.

    Article  Google Scholar 

  5. H. Chen, H. Liang, W. Dai, C. Lu, K. Ding, J. Bi, and B. Zhu (2020). Int. J. Hydrogen Energy 45, 32260.

    Article  CAS  Google Scholar 

  6. J. Yoo and A. Aksimentiev (2011). J. Phys. Chem. Lett. 3, 45.

    Article  Google Scholar 

  7. L. Y. Chen, J. Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J. M. Yang, S. Mathaudhu, and X. C. Li (2015). Nature 528, 539.

    Article  CAS  PubMed  Google Scholar 

  8. J. L. Bobet, E. Akiba, and Y. Nakamura (2000). Int. J. Hydrogen Energy 25, 987.

    Article  CAS  Google Scholar 

  9. Q. Y. Li, S. G. Xi, Y. F. Hu, Y. Q. Yuan, Y. R. Zhao, M. C. Li, J. J. Yuan, and Y. J. Yang (2021). Comp. Mater. Sci. 197.

    Article  CAS  Google Scholar 

  10. Y. Jin, S. Lu, A. Hermann, X. Kuang, C. Zhang, C. Lu, H. Xu, and W. Zheng (2016). Sci. Rep.-UK 6, 30116.

    Article  CAS  Google Scholar 

  11. T. Diederich, T. Doppner, J. Braune, J. Tiggesbaumker, and K. H. Meiwes-Broer (2001). Phys. Rev. Lett. 86, 4807.

    Article  CAS  PubMed  Google Scholar 

  12. V. V. Kumar and R. Car (1991). Physica B 44, 8243.

    CAS  Google Scholar 

  13. O. C. Thomas, W. Zheng, S. Xu, K. H. Bowen Jr., and M. Shiloh (2002). Phys. Rev. Lett. 89, 213403.

    Article  PubMed  Google Scholar 

  14. P. H. Acioli and J. Jellinek (2002). Phys. Rev. Lett. 89.

    Article  PubMed  Google Scholar 

  15. J. Jellinek and P. H. Acioli (2002). J. Phys. Chem. A 107, 10919.

    Article  Google Scholar 

  16. A. Lyalin, I. Solovyov, A. Solovyov, and W. Greiner (2003). Phys. Rev. A 67, 063203.

    Article  Google Scholar 

  17. Q. Y. Li, Y. F. Hu, S. G. Xi, Y. Y. Li, H. Yang, Y. Q. Yuan, J. Yang, and M. C. Li (2021). J. Mol. Liq. 343, 117622.

    Article  CAS  Google Scholar 

  18. S. Xi, Q. Li, Y. Hu, Y. Yuan, Y. Zhao, J. Yuan, M. Li, and Y. Yang (2021). Chin. Phys. B 10, 1088.

    Google Scholar 

  19. X. G. Gong, Q. Q. Zheng, and Y. Z. He (1993). Phys. Lett. A 181, 459.

    Article  CAS  Google Scholar 

  20. S. N. Belyaev, S. V. Panteleev, S. K. Ignatov, and A. G. Razuvaev (2016). Comput Theor. Chem. 1079, 34.

    Article  CAS  Google Scholar 

  21. K. Duanmu, O. Roberto-Neto, F. B. C. Machado, J. A. Hansen, J. Shen, P. Piecuch, and D. G. Truhlar (2016). J. Phys. Chem. C 120, 13275.

    Article  CAS  Google Scholar 

  22. I. Heidari, S. De, S. M. Ghazi, S. Goedecker, and D. G. Kanhere (2011). J. Phys. Chem. A 115, 12307.

    Article  CAS  PubMed  Google Scholar 

  23. J. Zhang, Y. Duan, K. Xu, V. Ji, and Z. Man (2008). Physica B 403, 3119.

    Article  CAS  Google Scholar 

  24. X. Xing, J. Wang, X. Kuang, X. Xia, C. Lu, and G. Maroulis (2016). Phys. Chem. Chem. Phys. 18, 26177.

    Article  CAS  PubMed  Google Scholar 

  25. M. Brack (1993). Rev. Mod. Phys. 65, 677.

    Article  CAS  Google Scholar 

  26. J. Akola, K. Rytkönen, and M. Manninen (2001). Eur. Phys. J. D 16, 21.

    Article  CAS  Google Scholar 

  27. Y. R. Zhao, T. T. Bai, L. N. Jia, W. Xin, Y. F. Hu, X. S. Zheng, and S. T. Hou (2019). J. Phys. Chem. C 123, 28561.

    Article  CAS  Google Scholar 

  28. W. Xin, B. Liu, Y. Zhao, G. Chen, P. Chen, Y. Zhou, W. Li, Y. Xu, Y. Zhou, and Y. A. Nikolaevich (2022). Electrochem. Acta 404.

    Article  CAS  Google Scholar 

  29. G. X. Ge, Y. Han, J. G. Wan, J. J. Zhao, and G. H. Wang (2013). J. Chem. Phys. 139.

    Article  PubMed  Google Scholar 

  30. F. Kong and Y. Hu (2014). J. Mol. Model. 20, 2087.

    Article  PubMed  Google Scholar 

  31. V. M. Medel, J. U. Reveles, S. N. Khanna, V. Chauhan, P. Sen, and A. W. Castleman (2011). Proc. Natl. Acad. Sci. USA 108, 10062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. X. Xia, X. Kuang, C. Lu, Y. Jin, X. Xing, G. Merino, and A. Hermann (2016). J. Phys. Chem. A 120, 7947.

    Article  CAS  PubMed  Google Scholar 

  33. G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz (1999). J. Alloys Compd. 292, 247.

    Article  CAS  Google Scholar 

  34. Y. Zhao, Y. Xu, P. Chen, Y. Yuan, Y. Qian, and Q. Li (2021). Results Phys. 26.

    Article  Google Scholar 

  35. M. R. Dehghan, S. Ahmadi, Z. M. Kotena, and M. Niakousari (2021). J. Mol. Graph. Model. 105.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Wang, J. Lv, L. Zhu, and Y. Ma (2010). Phys. Rev. B 82.

    Article  Google Scholar 

  37. J. Lv, Y. Wang, L. Zhu, and Y. Ma (2012). J. Chem. Phys. 137.

    Article  PubMed  Google Scholar 

  38. Y. Wang, J. Lv, L. Zhu, and Y. Ma (2012). Comput. Phys. Commun. 183, 2063.

    Article  CAS  Google Scholar 

  39. J. S. Binkley, J. A. Pople, and W. J. Hehre (1980). J. Am. Chem. Soc. 102, 939.

    Article  CAS  Google Scholar 

  40. J. W. Hehre (1972). J. Chem. Phys. 56, 2257.

    Article  CAS  Google Scholar 

  41. M. W. Wong, P. M. W. Gill, R. H. Nobes, and L. Radom (1988). J. Phys. Chem. A 92, 4875.

    Article  CAS  Google Scholar 

  42. J. R. Durig, K. W. Ng, C. Zheng, and S. Shen (2004). Struct. Chem. 15, 149.

    Article  CAS  Google Scholar 

  43. J. P. Perdew and Y. Wang (1992). Physica B 46, 12947.

    CAS  Google Scholar 

  44. D. E. Bergeron, A. W. C. Castlemanm, Jr., T. Morisato, and S. N. Khanna (2004). Science 304, 84.

    Article  CAS  PubMed  Google Scholar 

  45. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub (1998). J. Chem. Phys. 108, 4439.

    Article  CAS  Google Scholar 

  46. F. Maseras and K. Morokuma (1992). Chem. Phys. Lett. 195, 500.

    Article  CAS  Google Scholar 

  47. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.

    Article  CAS  PubMed  Google Scholar 

  48. M. J. Frisch, et al., Gaussian 09, Revision D.01 (Gaussian Inc, Wallingford, 2013).

    Google Scholar 

  49. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.

    Article  PubMed  Google Scholar 

  50. I. Mayer (2010). Int. J. Quantum Chem. 26, 151.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Fund of Postgraduate Sichuan University of Science & Engineering (Grant Nos. y2020073, y2021008), and the Innovation and Entrepreneurship Training Program of Sichuan Province (Grant Nos. S202010622080, S202010622082, S202110622032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Quan Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H.M., Hu, Y.F., Yuan, Y.Q. et al. Structure and Electronic Properties of Neutral and Anionic X-Doped Medium-Sized Mg16 (X = Co, Fe, Ni) Clusters. J Clust Sci 34, 911–920 (2023). https://doi.org/10.1007/s10876-022-02269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02269-8

Keywords

Navigation